epha.health
Feedback
Neuer Fall
Anmelden
busy
3
Wirkstoffe
|
0
Befunde
|
Vorgehen

Pharmakologische Bewertung zu Ciclosporin, Aliskiren und Atorvastatin

Plan
Drucken
Version 6.0.32 (Beta Preview)

Zusammenfassung Zusammenfassung info 43%

Pharmakokinetik -39%
Ciclosporin
Aliskiren
Atorvastatin
Scores -2%
Verlängerung der QT-Zeit
Anticholinerge Effekte
Serotonerge Effekte
Unerwünschte Arzneimittelwirkungen -16%
Tremor
Hypertonie
Hirsutismus

Varianten ✨

Für die rechenintensive Bewertung der Varianten bitte das kostenpflichtige Standard Abonnement wählen.

Medikation Anwendungsgebiete

Eklärungen für Patienten zu den Wirkstoffen

undefined Pharmakokinetik info -39%

∑ ExpositionaCicAliAto
Ciclosporin 1.09 1 1.09
Aliskiren 3.93 3.85 1.51
Atorvastatin 9.93 [9.93,12.32] 1,2 9.93 1
Relevante Genotypen: 1BCRP, 2OATP1B1
Symbol (a): x-fache Veränderung der AUC
Legende (n.a.): Angaben nicht verfügbar

Die genannten Expositionsveränderungen beziehen sich jeweils auf Veränderungen der Plasmakonzentrations-Zeit-Kurve [ AUC ]. Die Exposition von Atorvastatin erhöht sich auf 993%, wenn eine Kombination mit Ciclosporin (993%) und Aliskiren (100%) erfolgt. Dadurch können vermehrt Nebenwirkungen auftreten. Die Exposition von Aliskiren erhöht sich auf 393%, wenn eine Kombination mit Ciclosporin (385%) und Atorvastatin (151%) erfolgt. Dadurch können vermehrt Nebenwirkungen auftreten. Die Exposition von Ciclosporin erhöht sich auf 109%, wenn eine Kombination mit Aliskiren (100%) und Atorvastatin (109%) erfolgt.

Bewertung: Für die Berechnung der individuellen Expositionsveränderungen durch die Wechselwirkungen werden als Ausgangsbasis die pharmakokinetischen Parameter der durchschnittlichen Population verwendet.
Ciclosporin hat eine tiefe orale Bioverfügbarkeit [ F ] von 27%, weshalb die maximalen Plasmaspiegel [ Cmax ] sich bei einer Interaktion tendentiell stark verändern. Die terminale Halbwertszeit [ t12 ] beträgt 13.35 Stunden und konstante Plasmaspiegel [ Css ] werden ungefähr nach 53.4 Stunden erreicht. Die Proteinbindung [ Pb ] ist mit 95.4% stark und das Verteilungsvolumen [ Vd ] ist mit 92 Liter sehr gross, da die Substanz eine tiefe hepatische Extraktionsrate von 0.24 besitzt, kann eine Verdrängung aus der Proteinbindung [Pb] im Rahmen einer Interaktion die Exposition erhöhen. Die Metabolisierung findet vor allem über CYP3A4 statt und der aktive Transport erfolgt insbesondere über PGP. Unter anderem ist Ciclosporin ein Hemmer von CYP3A4, PGP, BCRP, OATP1B1 und OATP1B3.
Aliskiren hat eine tiefe orale Bioverfügbarkeit [ F ] von 3%, weshalb die maximalen Plasmaspiegel [ Cmax ] sich bei einer Interaktion tendentiell stark verändern. Die terminale Halbwertszeit [ t12 ] ist mit 26 Stunden eher lang und konstante Plasmaspiegel [ Css ] werden erst nach mehr als 104 Stunden erreicht. Die Proteinbindung [ Pb ] ist mit 49% eher schwach und das Verteilungsvolumen [ Vd ] ist mit 133 Liter sehr gross. da die Substanz eine tiefe hepatische Extraktionsrate von 0.14 besitzt, kann eine Verdrängung aus der Proteinbindung [Pb] im Rahmen einer Interaktion die Exposition erhöhen. Ungefähr 23.0% einer verabreichten Dosis werden unverändert über die Niere ausgeschieden und dieser Anteil wird selten durch Interaktionen verändert. Die Metabolisierung findet vor allem über CYP3A4 statt und der aktive Transport erfolgt zum Teil über OATP1A2, OATP2B1 und PGP.
Atorvastatin hat eine tiefe orale Bioverfügbarkeit [ F ] von 14%, weshalb die maximalen Plasmaspiegel [ Cmax ] sich bei einer Interaktion tendentiell stark verändern. Die terminale Halbwertszeit [ t12 ] beträgt 14 Stunden und konstante Plasmaspiegel [ Css ] werden ungefähr nach 56 Stunden erreicht. Die Proteinbindung [ Pb ] ist mit 98.5% sehr stark und das Verteilungsvolumen [ Vd ] ist mit 381 Liter sehr gross. da die Substanz aber ein hohe hepatische Extraktionsrate von 0.73 besitzt sind nur Veränderung des Leberblutflusses [ Q ] relevant. Ungefähr 21.4% einer verabreichten Dosis werden unverändert über die Niere ausgeschieden und dieser Anteil wird selten durch Interaktionen verändert. Die Metabolisierung findet vor allem über CYP3A4 statt und der aktive Transport erfolgt zum Teil über BCRP, MRP2, MRP4, OATP1A2, OATP1B1, OATP1B3, OATP2B1 und PGP. Unter anderem ist Atorvastatin ein Hemmer von PGP.

Transmitter Serotonerge Effekte info -0%

Scores ∑ Punkte CicAliAto
Serotonerge Effekte a 0 Ø Ø Ø
Symbol (a): Risiko ab 5 Punkten erhöht.

Bewertung: Gemäss unseren Erkenntnissen erhöhen weder Ciclosporin, Aliskiren noch Atorvastatin die serotonerge Aktivität.

Transmitter Anticholinerge Effekte info -2%

Scores ∑ Punkte CicAliAto
Kiesel b 1+ØØ
Symbol (b): Risiko ab 3 Punkten erhöht.

Empfehlung: Insbesondere nach einer Dosiserhöhung und bei Dosierungen im oberen therapeutischen Bereich sollte vorsichtshalber auf anticholinerge Symptome geachtet werden.

Bewertung: Ciclosporin beeinflusst das anticholinerge System nur mild. Das Risiko für ein anticholinerge Syndrom ist bei dieser Medikation eher als gering einzustufen, wenn die Dosierung sich im üblichen Bereich befindet. Gemäss unseren Erkenntnissen erhöhen weder Aliskiren noch Atorvastatin die anticholinerge Aktivität.

Elektrokardiogramm Verlängerung der QT-Zeit info -0%

Für Ciclosporin, Aliskiren und Atorvastatin ist uns kein QT-Zeit verlängerndes Potential bekannt.

Weitere Nebenwirkungen Allgemeine Nebenwirkungen info -16%

Nebenwirkungen ∑ Häufigkeit CicAliAto
Tremor33.5 %33.5n.a.n.a.
Hypertonie33.0 %33.0n.a.n.a.
Hirsutismus33.0 %33.0n.a.n.a.
Nephrotoxizität31.5 %31.5n.a.n.a.
Durchfall16.1 %n.a.2.3↑14.1↑
Kopfschmerzen14.7 %10.04.3↑+
Arthralgie11.7 %n.a.n.a.11.7↑
Hyperlipidämie10.0 %10.0n.a.n.a.
Myalgie8.4 %n.a.n.a.8.4↑
Nasopharyngitis8.3 %n.a.n.a.8.3↑
Tablellarischer Auszug der häufigsten Nebenwirkungen
Zeichen (+): Nebenwirkung beschrieben, aber Häufigkeit nicht bekannt
Zeichen (↑/↓): Häufigkeit aufgrund der Exposition eher höher / tiefer

Renal
Harnwegsinfekt (8%): Atorvastatin
Erhöhtes Serumkreatinin: Aliskiren
Nierenversagen: Aliskiren
Hämolytisch-urämisches Syndrom: Ciclosporin

Hepatisch
Hepatotoxizität (7%): Ciclosporin
Erhöhte Transaminasen: Atorvastatin
Leberversagen: Atorvastatin

Neurologisch
Krampfanfall (3%): Aliskiren, Ciclosporin
Intrakranielle Blutung (2.3%): Atorvastatin
Schwindel: Aliskiren
Parästhesie: Ciclosporin
Enzephalopathie: Ciclosporin
Progressive multifokale Leukoenzephalopathie: Ciclosporin

Elektrolyte
Hyperkaliämie: Aliskiren, Ciclosporin
Hypomagnesiämie: Ciclosporin

Gastrointestinal
Verstopfung: Atorvastatin
Gingivahypertrophie: Ciclosporin

Hämatologisch
Leukopenie: Ciclosporin

Immunologisch
Infektionen: Ciclosporin
Allergische Hautreaktionen wie Juckreiz und Hautausschlag: Aliskiren, Atorvastatin
Angioödem: Aliskiren

Metabolisch
Hyperglykämie: Ciclosporin
Hyperurikämie: Aliskiren

Opthalmologisch
Brennen im Auge: Ciclosporin
Bindehautentzündung: Ciclosporin
Schmerzen im Auge: Ciclosporin

Systemisch
Müdigkeit: Ciclosporin

Muskuloskeletal
Erhöhte Kreatinkinase: Atorvastatin
Myopathie: Atorvastatin
Rhabdomyolyse: Atorvastatin
Sehnenruptur: Atorvastatin

Kardiologisch
Hypotonie: Aliskiren

Dermatologisch
Stevens Johnson-Syndrom: Aliskiren
Toxische epidermale Nekrolyse: Aliskiren

Einschränkungen Einschränkungen

Basierend auf Ihren und wissenschaftlichen Informationen bewerten wir das individuelle Risiko für unerwünschte Nebenwirkungen. Die orange ausgefüllten Balken signalisieren das grundsätzliche Potential der Medikamente diese Nebenwirkung hervorzurufen. Diese Empfehlungen sollen Fachpersonen beraten und ersetzen nicht die Konsultation durch einen Arzt. In der eingeschränkten Testversion (alpha) ist das Risiko aller Substanzen noch nicht abschliessend bewertet.

Literatur Referenzen

1. Hebert MF et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clinical pharmacology and therapeutics. 1992
Authors: Hebert MF Roberts JP Prueksaritanont T Benet LZ
Abstract: The pharmacokinetics of cyclosporine was studied in six healthy volunteers after administration of the drug orally (10 mg/kg) and intravenously (3 mg/kg) with and without concomitant rifampin administration. Both blood and plasma (separated at 37 degrees C) samples were analyzed for cyclosporine concentration. For blood and plasma, respectively, clearances of cyclosporine were calculated to be 0.30 and 0.55 L/hr/kg, values for volume of distribution at steady state were 1.31 and 1.68 L/kg, and bioavailabilities were 27% and 33% during the pre-rifampin phase. Post-rifampin phase clearances of cyclosporine were 0.42 and 0.79 L/hr/kg, values for volume of distribution at steady state were 1.36 and 1.35 L/kg, and bioavailabilities were 10% and 9% for blood and plasma, respectively. Rifampin not only induces the hepatic metabolism of cyclosporine but also decreases its bioavailability to a greater extent than would be predicted by the increased metabolism. The decreased bioavailability most probably can be explained by an induction of intestinal cytochrome P450 enzymes, which appears to be markedly greater than the induction of hepatic metabolism.
Pubmed Id: 1424418
2. Schwinghammer TL et al. The kinetics of cyclosporine and its metabolites in bone marrow transplant patients. British journal of clinical pharmacology. 1991
Authors: Schwinghammer TL Przepiorka D Venkataramanan R Wang CP Burckart GJ Rosenfeld CS Shadduck RK
Abstract: 1. The pharmacokinetics of cyclosporine (CsA) and the time course of CsA metabolites were studied in five bone marrow transplant patients after intravenous (i.v.) administration on two separate occasions and once after oral CsA administration. 2. Cyclosporine and cyclosporine metabolites were measured in whole blood by h.p.l.c. 3. Cyclosporine clearance after i.v. administration decreased from 3.9 +/- 1.7 ml min-1 kg-1 to 2.0 +/- 0.6 ml min-1 kg-1 after 14 days of treatment. The mean +/- s.d. absolute oral bioavailability of cyclosporine was 17 +/- 11%. 4. Hydroxylated CsA (M-17) was the major metabolite in blood. There were no significant differences in the mean metabolite/CsA AUC ratios between the first and second i.v. studies. 5. After oral administration, the metabolite to CsA AUC ratios were higher for most metabolites compared to those observed in the second i.v. study, suggesting a contribution of intestinal metabolism to the clearance of CsA.
Pubmed Id: 1777368
3. Grevel J et al. Pharmacokinetics of oral cyclosporin A (Sandimmun) in healthy subjects. European journal of clinical pharmacology. 1986
Authors: Grevel J Nüesch E Abisch E Kutz K
Abstract: Extensive pharmacokinetic (PK) profiles after oral dosing of 300 mg cyclosporin A (CsA) were determined in whole blood by radioimmunoassay (RIA) in 14 healthy male volunteers, using two-compartment models with either first order (M1) or zero order (M0) absorption. According to zero order absorption the mean of the following PK parameters was determined: terminal half-life = 12.1 +/- 5.0 h, apparent volume of distribution at steady-state = 5.6 +/- 2.11 X kg-1, apparent clearance = 0.51 +/- 0.11 l X h-1 X kg-1. The time lag between drug ingestion and first blood level was short, 0.38 +/- 0.11 h. Drug absorption lasted for 2.8 +/- 1.6 h. The end of absorption was indicated in each individual by a sharp drop in blood levels. The observations support the assumption that CsA is absorbed in the upper part of the small intestine with a clear-cut termination (absorption window). This assumption may explain the high degree of variability in the bioavailability of CsA.
Pubmed Id: 3803418
4. Stern RH et al. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction of atorvastatin. Journal of clinical pharmacology. 1997
Authors: Stern RH Yang BB Horton M Moore S Abel RB Olson SC
Abstract: The objective of this study was to determine the effects of renal dysfunction on the steady-state pharmacokinetics and pharmacodynamics of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Nineteen subjects with calculated creatinine clearances ranging from 13 mL/min to 143 mL/min were administered 10 mg atorvastatin daily for 2 weeks. Pharmacokinetic parameters and lipid responses were analyzed by regression on calculated creatinine clearance. Correlations between steady-state atorvastatin pharmacokinetic or pharmacodynamic parameters and creatinine clearance were weak and, in general, did not achieve statistical significance. Although the elimination rate constant, lambda z (0.579), was significantly correlated with creatinine clearance, neither maximum plasma concentration (Cmax, -0.361) nor oral clearance (Cl/F, 0.306) were; thus, steady-state exposure is not altered. Renal impairment has no significant effect on pharmacodynamics and pharmacokinetics of atorvastatin.
Pubmed Id: 9549635
5. Mazzu AL et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clinical pharmacology and therapeutics. 2000
Authors: Mazzu AL Lasseter KC Shamblen EC Agarwal V Lettieri J Sundaresen P
Abstract: BACKGROUND: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are metabolized by distinct pathways that may alter the extent of drug-drug interactions. Cerivastatin is metabolized by cytochrome P450 (CYP)3A4 and CYP2C8. Atorvastatin is metabolized solely by CYP3A4, and pravastatin metabolism is not well defined. Coadministration of higher doses of these statins with CYP3A4 inhibitors has the potential for eliciting adverse drug-drug interactions. OBJECTIVE: To determine the comparative effect of itraconazole, a potent CYP3A4 inhibitor, on the pharmacokinetics of cerivastatin, atorvastatin, and pravastatin. METHODS: In this single-site, randomized, three-way crossover, open-labeled study, healthy subjects (n = 18) received single doses of cerivastatin 0.8 mg, atorvastatin 20 mg, or pravastatin 40 mg without and with itraconazole 200 mg. Pharmacokinetic parameters [AUC(0-infinity), AUC(0-tn), peak concentration (Cmax), time to reach Cmax (tmax), and half-life (t1/2)] were determined for parent statins and major metabolites. RESULTS: Concomitant cerivastatin/itraconazole treatment produced small elevations in the cerivastatin AUC(0-infinity), Cmax, and t1/2 (27%, 25%, and 19%, respectively; P < .05 versus cerivastatin alone). Itraconazole coadministration produced similar changes in pravastatin pharmacokinetics [AUC elevated 51% (P < .05 versus pravastatin alone), 24% (Cmax), and 23% (t1/2), respectively]. However, itraconazole dramatically increased atorvastatin AUC (150%), Cmax (38%), and t1/2 (30%) (P < .05). The elevation in atorvastatin AUC was significantly greater than that of cerivastatin (P < .005) or pravastatin (P < .005). CONCLUSION: Itraconazole markedly elevated atorvastatin plasma levels (2.5-fold) after 20 mg dosing, suggesting that concomitant itraconazole/atorvastatin therapy be carefully considered. Itraconazole produced modest elevations in the plasma levels of cerivastatin 0.8 mg or pravastatin 40 mg (1.3-fold and 1.5-fold, respectively), indicating that combination treatment with itraconazole with cerivastatin or pravastatin may be preferable.
Pubmed Id: 11061579
6. Lennernäs H Clinical pharmacokinetics of atorvastatin. Clinical pharmacokinetics. 2003
Authors: Lennernäs H
Abstract: Hypercholesterolaemia is a risk factor for the development of atherosclerotic disease. Atorvastatin lowers plasma low-density lipoprotein (LDL) cholesterol levels by inhibition of HMG-CoA reductase. The mean dose-response relationship has been shown to be log-linear for atorvastatin, but plasma concentrations of atorvastatin acid and its metabolites do not correlate with LDL-cholesterol reduction at a given dose. The clinical dosage range for atorvastatin is 10-80 mg/day, and it is given in the acid form. Atorvastatin acid is highly soluble and permeable, and the drug is completely absorbed after oral administration. However, atorvastatin acid is subject to extensive first-pass metabolism in the gut wall as well as in the liver, as oral bioavailability is 14%. The volume of distribution of atorvastatin acid is 381L, and plasma protein binding exceeds 98%. Atorvastatin acid is extensively metabolised in both the gut and liver by oxidation, lactonisation and glucuronidation, and the metabolites are eliminated by biliary secretion and direct secretion from blood to the intestine. In vitro, atorvastatin acid is a substrate for P-glycoprotein, organic anion-transporting polypeptide (OATP) C and H+-monocarboxylic acid cotransporter. The total plasma clearance of atorvastatin acid is 625 mL/min and the half-life is about 7 hours. The renal route is of minor importance (<1%) for the elimination of atorvastatin acid. In vivo, cytochrome P450 (CYP) 3A4 is responsible for the formation of two active metabolites from the acid and the lactone forms of atorvastatin. Atorvastatin acid and its metabolites undergo glucuronidation mediated by uridinediphosphoglucuronyltransferases 1A1 and 1A3. Atorvastatin can be given either in the morning or in the evening. Food decreases the absorption rate of atorvastatin acid after oral administration, as indicated by decreased peak concentration and increased time to peak concentration. Women appear to have a slightly lower plasma exposure to atorvastatin for a given dose. Atorvastatin is subject to metabolism by CYP3A4 and cellular membrane transport by OATP C and P-glycoprotein, and drug-drug interactions with potent inhibitors of these systems, such as itraconazole, nelfinavir, ritonavir, cyclosporin, fibrates, erythromycin and grapefruit juice, have been demonstrated. An interaction with gemfibrozil seems to be mediated by inhibition of glucuronidation. A few case studies have reported rhabdomyolysis when the pharmacokinetics of atorvastatin have been affected by interacting drugs. Atorvastatin increases the bioavailability of digoxin, most probably by inhibition of P-glycoprotein, but does not affect the pharmacokinetics of ritonavir, nelfinavir or terfenadine.
Pubmed Id: 14531725
7. Kapturczak MH et al. Pharmacology of calcineurin antagonists. Transplantation proceedings. 2004
Authors: Kapturczak MH Meier-Kriesche HU Kaplan B
Abstract: Cyclosporine and tacrolimus share the same pharmacodynamic property of activated T-cell suppression via inhibition of calcineurin. The introduction of these drugs to the immunosuppressive repertoire of transplant management has greatly improved the outcomes in organ transplantation and constitutes arguably one of the major breakthroughs in modern medicine. To this date, calcineurin inhibitors are the mainstay of prevention of allograft rejection. The experience gained from the laboratory and clinical use of cyclosporine and tacrolimus has greatly advanced our knowledge about the nature of many aspects of immune response. However, the clinical practice still struggles with the shortcomings of these drugs: the significant inter- and intraindividual variability of their pharmacokinetics, the unpredictability of their pharmacodynamic effects, as well as complexity of interactions with other agents in transplant recipients. This article briefly reviews the pharmacological aspects of calcineurin antagonists as they relate to the mode of action and pharmacokinetics as well as drug interactions and monitoring.
Pubmed Id: 15041303
8. Grube M et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clinical pharmacology and therapeutics. 2006
Authors: Grube M Köck K Oswald S Draber K Meissner K Eckel L Böhm M Felix SB Vogelgesang S Jedlitschky G Siegmund W Warzok R Kroemer HK
Abstract: BACKGROUND: The cardiac effects of statins are subject to controversial discussion, and the mechanism of their uptake into the human heart is unknown. A candidate protein is the organic anion transporting polypeptide (OATP) 2B1 (SLCO2B1), because related transporters are involved in the uptake of statins into the human liver. In this study we examine OATP2B1 expression in the human heart and describe statins as inhibitors and substrates of OATP2B1. METHODS: The expression of OATP2B1 was analyzed in 46 human atrial and 15 ventricular samples, including samples from hearts with dilated cardiomyopathy and hearts with ischemic cardiomyopathy. RESULTS: Significant messenger ribonucleic acid expression was found in all samples, with no difference in the diseased hearts. However, patients who had taken atorvastatin exhibit decreased OATP2B1 messenger ribonucleic acid expression compared with patients with no statin treatment. OATP2B1 protein was detected at approximately 85 kd in atrial samples, as well as ventricular samples, and could be localized to the vascular endothelium. Furthermore, estrone-3-sulfate transport into OATP2B1-overexpressing Madin-Darby canine kidney II cells was inhibited by various drugs, including atorvastatin, simvastatin, cerivastatin, glyburide (INN, glibenclamide), and gemfibrozil, with the most pronounced effect being found for atorvastatin (inhibition constant, 0.7 +/- 0.4 micromol/L). Whereas simvastatin (lactone) itself was not transported by OATP2B1, atorvastatin was identified as a high-affinity substrate for OATP2B1 (Michaelis-Menten constant, 0.2 micromol/L) by direct transport measurement via liquid chromatography-tandem mass spectrometry. CONCLUSION: OATP2B1 is a high-affinity uptake transporter for atorvastatin and is expressed in the vascular endothelium of the human heart, suggesting its involvement in cardiac uptake of atorvastatin.
Pubmed Id: 17178262
9. Lau YY et al. effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clinical pharmacology and therapeutics. 2007
Authors: Lau YY Huang Y Frassetto L Benet LZ
Abstract: The inhibition of hepatic uptake transporters, such as OATP1B1, on the pharmacokinetics of atorvastatin is unknown. Here, we investigate the effect of a model hepatic transporter inhibitor, rifampin, on the kinetics of atorvastatin and its metabolites in humans. The inhibitory effect of a single rifampin dose on atorvastatin kinetics was studied in 11 healthy volunteers in a randomized, crossover study. Each subject received two 40-mg doses of atorvastatin, one on study day 1 and one on study day 8, separated by 1 week. One intravenous 30-min infusion of 600 mg rifampin was administered to each subject on either study day 1 or study day 8. Plasma concentrations of atorvastatin and metabolites were above the limits of quantitation for up to 24 h after dosing. Rifampin significantly increased the total area under the plasma concentration-time curve (AUC) of atorvastatin acid by 6.8+/-2.4-fold and that of 2-hydroxy-atorvastatin acid and 4-hydroxy-atorvastatin acid by 6.8+/-2.5- and 3.9+/-2.4-fold, respectively. The AUC values of the lactone forms of atorvastatin, 2-hydroxy-atorvastatin and 4-hydroxy-atorvastatin, were also significantly increased, but to a lower extent. An intravenous dose of rifampin substantially increased the plasma concentrations of atorvastatin and its acid and lactone metabolites. The data confirm that OATP1B transporters represent the major hepatic uptake systems for atorvastatin and its active metabolites. Inhibition of hepatic uptake may have consequences for efficacy and toxicity of drugs like atorvastatin that are mainly eliminated by the hepatobiliary system.
Pubmed Id: 17192770
10. Pasanen MK et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clinical pharmacology and therapeutics. 2007
Authors: Pasanen MK Fredrikson H Neuvonen PJ Niemi M
Abstract: Thirty-two healthy volunteers with different SLCO1B1 genotypes ingested a 20 mg dose of atorvastatin and 10 mg dose of rosuvastatin with a washout period of 1 week. Subjects with the SLCO1B1 c.521CC genotype (n=4) had a 144% (P<0.001) or 61% (P=0.049) greater mean area under the plasma atorvastatin concentration-time curve from 0 to 48 h (AUC(0-48 h)) than those with the c.521TT (n=16) or c.521TC (n=12) genotype, respectively. The AUC(0-48 h) of 2-hydroxyatorvastatin was 100% greater in subjects with the c.521CC genotype than in those with the c.521TT genotype (P=0.018). Rosuvastatin AUC(0-48 h) and peak plasma concentration (Cmax) were 65% (P=0.002) and 79% (P=0.003) higher in subjects with the c.521CC genotype than in those with the c.521TT genotype. These results indicate that, unexpectedly, SLCO1B1 polymorphism has a larger effect on the AUC of atorvastatin than on the more hydrophilic rosuvastatin.
Pubmed Id: 17473846
11. Vaidyanathan S et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren alone and in combination with irbesartan in renal impairment. Clinical pharmacokinetics. 2007
Authors: Vaidyanathan S Bigler H Yeh C Bizot MN Dieterich HA Howard D Dole WP
Abstract: BACKGROUND: Aliskiren is an orally active direct renin inhibitor approved for the treatment of hypertension. This study assessed the effects of renal impairment on the pharmacokinetics and safety of aliskiren alone and in combination with the angiotensin receptor antagonist irbesartan. METHODS: This open-label study enrolled 17 males with mild, moderate or severe renal impairment (creatinine clearance [CL(CR)] 50-80, 30-49 and <30 mL/minute, respectively) and 17 healthy males matched for age and bodyweight. Subjects received oral aliskiren 300 mg once daily on days 1-7 and aliskiren coadministered with irbesartan 300 mg on days 8-14. Plasma aliskiren concentrations were determined by high-performance liquid chromatography/tandem mass spectrometry at frequent intervals up to 24 hours after dosing on days 1, 7 and 14. RESULTS: Renal clearance of aliskiren averaged 1280 +/- 500 mL/hour (mean +/- SD) in healthy subjects and 559 +/- 220, 312 +/- 75 and 243 +/- 186 mL/hour in patients with mild, moderate and severe renal impairment, respectively. At steady state (day 7), the geometric mean ratios (renal impairment : matched healthy volunteers) ranged from 1.21 to 2.05 for the area under the plasma concentration-time curve (AUC) over the dosage interval tau (24h) [AUC(tau)]) and from 0.83 to 2.25 for the maximum observed plasma concentration of aliskiren at steady state. Changes in exposure did not correlate with CL(CR), consistent with an effect of renal impairment on non-renal drug disposition. The observed large intersubject variability in aliskiren pharmacokinetic parameters was unrelated to the degree of renal impairment. Accumulation of aliskiren at steady state (indicated by the AUC from 0 and 24 hours [AUC(24)] on day 7 vs day 1) was similar in healthy subjects (1.79 [95% CI 1.24, 2.60]) and those with renal impairment (range 1.39-1.99). Coadministration with irbesartan did not alter the pharmacokinetics of aliskiren. Aliskiren was well tolerated when administered alone or with irbesartan. CONCLUSIONS: Exposure to aliskiren is increased by renal impairment but does not correlate with the severity of renal impairment (CL(CR)). This is consistent with previous data indicating that renal clearance of aliskiren represents only a small fraction of total clearance. Initial dose adjustment of aliskiren is unlikely to be required in patients with renal impairment.
Pubmed Id: 17655373
12. Vaidyanathan S et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. Journal of clinical pharmacology. 2008
Authors: Vaidyanathan S Camenisch G Schuetz H Reynolds C Yeh CM Bizot MN Dieterich HA Howard D Dole WP
Abstract: This study investigated the potential pharmacokinetic interaction between the direct renin inhibitor aliskiren and modulators of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Aliskiren stimulated in vitro P-glycoprotein ATPase activity in recombinant baculovirus-infected Sf9 cells with high affinity (K(m) 2.1 micromol/L) and was transported by organic anion-transporting peptide OATP2B1-expressing HEK293 cells with moderate affinity (K(m) 72 micromol/L). Three open-label, multiple-dose studies in healthy subjects investigated the pharmacokinetic interactions between aliskiren 300 mg and digoxin 0.25 mg (n = 22), atorvastatin 80 mg (n = 21), or ketoconazole 200 mg bid (n = 21). Coadministration with aliskiren resulted in changes of <30% in AUC(tau) and C(max,ss) of digoxin, atorvastatin, o-hydroxy-atorvastatin, and rho-hydroxy-atorvastatin, indicating no clinically significant interaction with P-glycoprotein or CYP3A4 substrates. Aliskiren AUC(tau) was significantly increased by coadministration with atorvastatin (by 47%, P < .001) or ketoconazole (by 76%, P < .001) through mechanisms most likely involving transporters such as P-glycoprotein and organic anion-transporting peptide and possibly through metabolic pathways such as CYP3A4 in the gut wall. These results indicate that aliskiren is a substrate for but not an inhibitor of P-glycoprotein. On the basis of the small changes in exposure to digoxin and atorvastatin and the <2-fold increase in exposure to aliskiren during coadministration with atorvastatin and ketoconazole, the authors conclude that the potential for clinically relevant drug interactions between aliskiren and these substrates and/or inhibitors of P-glycoprotein/CPY3A4/OATP is low.
Pubmed Id: 18784280
13. He YJ et al. Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism. Clinica chimica acta; international journal of clinical chemistry. 2009
Authors: He YJ Zhang W Chen Y Guo D Tu JH Xu LY Tan ZR Chen BL Li Z Zhou G Yu BN Kirchheiner J Zhou HH
Abstract: BACKGROUND: Both atorvastatin and rifampicin are substrates of OATP1B1 (organic anion transporting polypeptide 1B1) encoded by SLCO1B1 gene. Rifampicin is a potent inhibitor of SLCO1B1 (IC50 1.5 umol/l) and SLCO1B1 521T>C functional genetic polymorphism alters the kinetics of atorvastatin in vivo. We hypothesize that rifampicin might influence atorvastatin kinetics in a SLCO1B1 polymorphism dependent manner. METHODS: Sixteen subjects with known SLCO1B1 genotypes (6 c.521TT, 6 c.521TC and 4 c.521CC) were divided into 2 groups (atorvastatin-placebo group, n=8; atorvastatin-rifampicin group, n=8) randomly. In this 2-phase crossover study, atorvastatin (40 mg single-oral dose) pharmacokinetics after co-administration of placebo and rifampicin (600 mg single-oral dose) were measured for up to 48 h by liquid chromatography-mass spectrometry (LC-MS). In the third phase, rifampicin (450 mg single-oral dose) pharmacokinetics was measured additionally. RESULTS: Rifampicin increased atorvastatin plasma concentration in accordance with SLCO1B1 521T>C genotype while the increasing percentage of AUC((0-48)) among c.521TT, c.521TC and c.521CC individuals were 833+/-245% vs 468+/-233% vs 330+/-223% (P=0.007). However, SLCO1B1 521T>C exerted no impact on rifampicin pharmacokinetics (P>0.05). CONCLUSIONS: These results suggested that rifampicin elevated the plasma concentration of atorvastatin depending on SLCO1B1 genotype and rifampicin pharmacokinetics were not altered by SLCO1B1 genotype.
Pubmed Id: 19374892
14. Keskitalo JE et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clinical pharmacology and therapeutics. 2009
Authors: Keskitalo JE Zolk O Fromm MF Kurkinen KJ Neuvonen PJ Niemi M
Abstract: The ABCG2 c.421C>A single-nucleotide polymorphism (SNP) was determined in 660 healthy Finnish volunteers, of whom 32 participated in a pharmacokinetic crossover study involving the administration of 20 mg atorvastatin and rosuvastatin. The frequency of the c.421A variant allele was 9.5% (95% confidence interval 8.1-11.3%). Subjects with the c.421AA genotype (n = 4) had a 72% larger mean area under the plasma atorvastatin concentration-time curve from time 0 to infinity (AUC(0-infinity)) than individuals with the c.421CC genotype had (n = 16; P = 0.049). In participants with the c.421AA genotype, the rosuvastatin AUC(0-infinity) was 100% greater than in those with c.421CA (n = 12) and 144% greater than in those with the c.421CC genotype. Also, those with the c.421AA genotype showed peak plasma rosuvastatin concentrations 108% higher than those in the c.421CA genotype group and 131% higher than those in the c.421CC genotype group (P < or = 0.01). In MDCKII-ABCG2 cells, atorvastatin transport was increased in the apical direction as compared with vector control cells (transport ratio 1.9 +/- 0.1 vs. 1.1 +/- 0.1). These results indicate that the ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and, even more so, of rosuvastatin-potentially affecting the efficacy and toxicity of statin therapy.
Pubmed Id: 19474787
15. de Jonge H et al. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Therapeutic drug monitoring. 2009
Authors: de Jonge H Naesens M Kuypers DR
Abstract: Although therapeutic drug monitoring (TDM) of immunosuppressive drugs has been an integral part of routine clinical practice in solid organ transplantation for many years, ongoing research in the field of immunosuppressive drug metabolism, pharmacokinetics, pharmacogenetics, pharmacodynamics, and clinical TDM keeps yielding new insights that might have future clinical implications. In this review, the authors will highlight some of these new insights for the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus and the antimetabolite mycophenolic acid (MPA) and will discuss the possible consequences. For CNIs, important relevant lessons for TDM can be learned from the results of 2 recently published large CNI minimization trials. Furthermore, because acute rejection and drug-related adverse events do occur despite routine application of CNI TDM, alternative approaches to better predict the dose-concentration-response relationship in the individual patient are being explored. Monitoring of CNI concentrations in lymphocytes and other tissues, determination of CNI metabolites, and CNI pharmacogenetics and pharmacodynamics are in their infancy but have the potential to become useful additions to conventional CNI TDM. Although MPA is usually administered at a fixed dose, there is a rationale for MPA TDM, and this is substantiated by the increasing knowledge of the many nongenetic and genetic factors contributing to the interindividual and intraindividual variability in MPA pharmacokinetics. However, recent, large, randomized clinical trials investigating the clinical utility of MPA TDM have reported conflicting data. Therefore, alternative pharmacokinetic (ie, MPA free fraction and metabolites) and pharmacodynamic approaches to better predict drug efficacy and toxicity are being explored. Finally, for MPA and tacrolimus, novel formulations have become available. For MPA, the differences in pharmacokinetic behavior between the old and the novel formulation will have implications for TDM, whereas for tacrolimus, this probably will not to be the case.
Pubmed Id: 19536049
16. Pham PA et al. Differential effects of tipranavir plus ritonavir on atorvastatin or rosuvastatin pharmacokinetics in healthy volunteers. Antimicrobial agents and chemotherapy. 2009
Authors: Pham PA la Porte CJ Lee LS van Heeswijk R Sabo JP Elgadi MM Piliero PJ Barditch-Crovo P Fuchs E Flexner C Cameron DW
Abstract: To identify pharmacokinetic (PK) drug-drug interactions between tipranavir-ritonavir (TPV/r) and rosuvastatin and atorvastatin, we conducted two prospective, open-label, single-arm, two-period studies. The geometric mean (GM) ratio was 1.37 (90% confidence interval [CI], 1.15 to 1.62) for the area under the concentration-time curve (AUC) for rosuvastatin and 2.23 (90% CI, 1.83 to 2.72) for the maximum concentration of drug in serum (Cmax) for rosuvastatin with TPV/r at steady state versus alone. The GM ratio was 9.36 (90% CI, 8.02 to 10.94) for the AUC of atorvastatin and 8.61 (90% CI, 7.25 to 10.21) for the Cmax of atorvastatin with TPV/r at steady state versus alone. Tipranavir PK parameters were not affected by single-dose rosuvastatin or atorvastatin. Mild gastrointestinal intolerance, headache, and mild reversible liver enzyme elevations (grade 1 and 2) were the most commonly reported adverse drug reactions. Based on these interactions, we recommend low initial doses of rosuvastatin (5 mg) and atorvastatin (10 mg), with careful clinical monitoring of rosuvastatin- or atorvastatin-related adverse events when combined with TPV/r.
Pubmed Id: 19667285
17. Ito S et al. Efficacy and safety of aliskiren in Japanese hypertensive patients with renal dysfunction. Hypertension research : official journal of the Japanese Society of Hypertension. 2010
Authors: Ito S Nakura N Le Breton S Keefe D
Abstract: This 12-week, multicenter, open-label study assessed the efficacy, pharmacokinetics and safety of a once-daily aliskiren in Japanese hypertensive patients with renal dysfunction. Patients (n=40, aged 20-80 years) with mean sitting diastolic blood pressure (msDBP) >or=95 and <110 mm Hg and serum creatinine between >or=1.3 and <3.0 mg per 100 ml in males or between >or=1.2 and <3.0 mg per 100 ml in females were eligible. Patients began therapy with a once-daily morning oral dose of 75 mg of aliskiren. In patients with inadequate blood pressure control (msDBP >or=90 or mean sitting systolic blood pressure [msSBP] >or=140 mm Hg) and without safety concerns (serum potassium >5.5 mEq l(-1) or an increase in serum creatinine >or=20%), the aliskiren dose was increased to 150 mg and then to 300 mg in sequential steps starting from Week 2. Efficacy was assessed as change in msSBP/msDBP from baseline to the Week 8 endpoint (with the last observation carried forward). The mean reduction from baseline to Week 8 endpoint was 13.9+/-16.6 and 11.6+/-9.7 mm Hg for msSBP and msDBP, respectively. At the Week 8 endpoint, 65% patients had achieved blood pressure response (msDBP <90 or a 10 mm Hg decrease or msSBP <140 or a 20 mm Hg decrease) and 30% had achieved blood pressure control (msSBP <140 mm Hg and msDBP <90 mm Hg). Aliskiren was well tolerated with no new safety concerns in Japanese hypertensive patients with renal dysfunction.
Pubmed Id: 19927154
18. Tapaninen T et al. Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. Journal of clinical pharmacology. 2011
Authors: Tapaninen T Backman JT Kurkinen KJ Neuvonen PJ Niemi M
Abstract: In a randomized crossover study, 11 healthy volunteers took 100 mg (first dose 200 mg) of the antifungal drug itraconazole, a P-glycoprotein and CYP3A4 inhibitor, or placebo twice daily for 5 days. On day 3, they ingested a single 150-mg dose of aliskiren, a renin inhibitor used in the treatment of hypertension. Itraconazole raised the peak plasma aliskiren concentration 5.8-fold (range, 1.1- to 24.3-fold; P < .001) and the area under the plasma aliskiren concentration-time curve 6.5-fold (range, 2.6- to 20.5-fold; P < .001) but had no significant effect on aliskiren elimination half-life. Itraconazole increased the amount of aliskiren excreted into the urine during 12 hours 8.0-fold (P < .001) and its renal clearance 1.2-fold (P = .042). Plasma renin activity 24 hours after aliskiren intake was 68% lower during the itraconazole phase than during the placebo phase (P = .011). In conclusion, itraconazole markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. The interaction is probably mainly explained by inhibition of the P-glycoprotein-mediated efflux of aliskiren in the small intestine, with a minor contribution from inhibition of CYP3A4. Concomitant use of aliskiren and itraconazole is best avoided.
Pubmed Id: 20400651
19. Rebello S et al. Effect of verapamil on the pharmacokinetics of aliskiren in healthy participants. Journal of clinical pharmacology. 2011
Authors: Rebello S Leon S Hariry S Dahlke M Jarugula V
Abstract: The authors describe the drug-drug interaction between aliskiren and verapamil in healthy participants. Eighteen participants first received an oral dose of aliskiren 300 mg (highest recommended clinical dose) in period 1. After a 10-day washout period, the participants received verapamil 240 mg/d for 8 days (period 2). On day 8, the participants also received an oral dose of aliskiren 300 mg. Safety and pharmacokinetic analyses were performed during each treatment period. Concomitant administration of a single dose of aliskiren during steady-state verapamil resulted in an increase in plasma concentration of aliskiren. The mean increase in AUC(0-∞), AUC(last), and C(max) was about 2-fold. On day 8, in the presence of aliskiren, AUC(τ,ss) of R-norverapamil, R-verapamil, S-norverapamil, and S-verapamil was decreased by 10%, 16%, 10%, and 25%, respectively. Similarly, the C(max,ss) of R-norverapamil, R-verapamil, S-norverapamil, and S-verapamil was decreased by 13%, 18%, 12%, and 24%, respectively. Aliskiren did not affect the AUC(τ,ss) ratios of R-norverapamil/R-verapamil and S-norverapamil/S-verapamil. Aliskiren administered alone or in combination with verapamil was well tolerated in healthy participants. In conclusion, no dose adjustment is necessary when aliskiren is administered with moderate ABCB1 inhibitors such as verapamil (240 mg/d).
Pubmed Id: 20413453
20. Rebello S et al. Effect of cyclosporine on the pharmacokinetics of aliskiren in healthy subjects. Journal of clinical pharmacology. 2011
Authors: Rebello S Compain S Feng A Hariry S Dieterich HA Jarugula V
Abstract: To explore the clinical relevance of inhibition of multidrug resistance transporter 1 and organic anion transporting polypeptide transporter, a drug-drug interaction study was conducted using aliskiren and cyclosporine. This was an open-label, single-sequence, parallel-group, single-dose study in healthy subjects. Subjects (n = 14) first received aliskiren 75 mg orally (period 1), followed by aliskiren 75 mg + cyclosporine 200 mg (period 2) after a 7-day washout period, and aliskiren 75 mg + cyclosporine 600 mg (period 3) after a 14-day washout period. Safety and pharmacokinetics were analyzed during each period. The primary objective was to characterize pharmacokinetics of aliskiren (single-dose and combination with cyclosporine). The increases in area under the time-concentration curve from time 0 to infinity and maximum concentration associated with cyclosporine 200 mg or 600 mg were 4- to 5-fold and 2.5-fold, respectively. Mean half-life increased from 25 to 45 hours. Based on comparison to literature, a single-dose of aliskiren 75 mg did not alter the pharmacokinetics of cyclosporine. Aliskiren 75 mg was well tolerated. Combination with cyclosporine increased the number of adverse events, mainly hot flush and gastrointestinal symptoms, with no serious adverse events. Two adverse events led to withdrawal (ligament rupture, not suspected to be study-drug related; and vomiting, suspected to be study-drug related). Laboratory parameters, vital signs, and electrocardiographs showed no time- or treatment-related changes. As cyclosporine significantly altered the pharmacokinetics of aliskiren in humans, its use with aliskiren is not recommended.
Pubmed Id: 21406600
21. Lee JE et al. Effect of the hepatitis C virus protease inhibitor telaprevir on the pharmacokinetics of amlodipine and atorvastatin. Antimicrobial agents and chemotherapy. 2011
Authors: Lee JE van Heeswijk R Alves K Smith F Garg V
Abstract: Telaprevir is a hepatitis C virus protease inhibitor that is both a substrate and an inhibitor of CYP3A. Amlodipine and atorvastatin are both substrates of CYP3A and are among the drugs most frequently used by patients with hepatitis C. This study was conducted to examine the effect of telaprevir on atorvastatin and amlodipine pharmacokinetics (PK). This was an open-label, single sequence, nonrandomized study involving 21 healthy male and female volunteers. A coformulation of 5 mg amlodipine and 20 mg atorvastatin was administered on day 1. Telaprevir was taken with food as a 750-mg dose every 8 h from day 11 until day 26, and a single dose of the amlodipine-atorvastatin combination was readministered on day 17. Plasma samples were collected for determination of the PK of telaprevir, amlodipine, atorvastatin, ortho-hydroxy atorvastatin, and para-hydroxy atorvastatin. When administration with telaprevir was compared with administration without telaprevir, the least-square mean ratios (90% confidence limits) for amlodipine were 1.27 (1.21, 1.33) for the maximum drug concentration in serum (C(max)) and 2.79 (2.58, 3.01) for the area under the concentration-time curve from 0 h to infinity (AUC(0-∞)); for atorvastatin, they were 10.6 (8.74, 12.9) for the C(max) and 7.88 (6.84, 9.07) for the AUC(0-∞). Telaprevir significantly increased exposure to amlodipine and atorvastatin, consistent with the inhibitory effect of telaprevir on the CYP3A-mediated metabolism of these agents.
Pubmed Id: 21825288
22. Roth M et al. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. British journal of pharmacology. 2012
Authors: Roth M Obaidat A Hagenbuch B
Abstract: The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Pubmed Id: 22013971
23. Khadzhynov D et al. Pharmacokinetics of aliskiren in patients with end-stage renal disease undergoing haemodialysis. Clinical pharmacokinetics. 2012
Authors: Khadzhynov D Slowinski T Lieker I Neumayer HH Albrecht D Streefkerk HJ Rebello S Peters H
Abstract: BACKGROUND AND OBJECTIVES: Aliskiren represents a novel class of orally active renin inhibitors. This study analyses the pharmacokinetics, tolerability and safety of single-dose aliskiren inpatients with end-stage renal disease (ESRD) undergoing haemodialysis. METHODS: Six ESRD patients and six matched healthy volunteers were enrolled in an open-label, parallel-group, single-sequence study. The ESRD patients underwent two treatment periods where 300 mg of aliskiren was administered 48 or 1 h before a standardized haemodialysis session (4 h, 1.4 m(2) high-flux filter, blood flow 300 mL/min, dialysate flow 500 mL/min). Washout was >10 days between both periods. Blood and dialysis samples were taken for up to 96 h postdose to determine aliskiren concentrations. RESULTS: Compared with the healthy subjects (1681 ± 1034 ng·h/mL), the area under the plasma concentration-time curve (AUC) from time zero to infinity was 61% (haemodialysis at 48 h) and 41% (haemodialysis at 1 h) higher in ESRD patients receiving single-dose aliskiren 300 mg. The maximum (peak) plasma drug concentration (481 ± 497 ng/mL in healthy subjects) was 17% higher (haemodialysis at 48 h) and 16% lower (haemodialysis at 1 h). In both treatment periods, dialysis clearance was below 2% of oral clearance and the mean fraction eliminated from circulation was 10 and 12% in period 1 and 2, respectively. Drug AUCs were similar in ESRD patients receiving aliskiren 1 or 48 h before dialysis. No severe adverse events occurred. CONCLUSION: The exposure of aliskiren is moderately higher in ESRD patients. Only a minor portion is removed by a typical haemodialysis session. Aliskiren exposure is not significantly affected by intermittent haemodialysis, suggesting that no dose adjustment is necessary in this population.
Pubmed Id: 23018529
24. Shitara Y et al. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharmaceutics & drug disposition. 2013
Authors: Shitara Y Maeda K Ikejiri K Yoshida K Horie T Sugiyama Y
Abstract: Organic anion transporting polypeptide (OATP) family transporters accept a number of drugs and are increasingly being recognized as important factors in governing drug and metabolite pharmacokinetics. OATP1B1 and OATP1B3 play an important role in hepatic drug uptake while OATP2B1 and OATP1A2 might be key players in intestinal absorption and transport across blood-brain barrier of drugs, respectively. To understand the importance of OATPs in the hepatic clearance of drugs, the rate-determining process for elimination should be considered; for some drugs, hepatic uptake clearance rather than metabolic intrinsic clearance is the more important determinant of hepatic clearances. The importance of the unbound concentration ratio (liver/blood), K(p,uu) , of drugs, which is partly governed by OATPs, is exemplified in interpreting the difference in the IC(50) of statins between the hepatocyte and microsome systems for the inhibition of HMG-CoA reductase activity. The intrinsic activity and/or expression level of OATPs are affected by genetic polymorphisms and drug-drug interactions. Their effects on the elimination rate or intestinal absorption rate of drugs may sometimes depend on the substrate drug. This is partly because of the different contribution of OATP isoforms to clearance or intestinal absorption. When the contribution of the OATP-mediated pathway is substantial, the pharmacokinetics of substrate drugs should be greatly affected. This review describes the estimation of the contribution of OATP1B1 to the total hepatic uptake of drugs from the data of fold-increases in the plasma concentration of substrate drugs by the genetic polymorphism of this transporter. To understand the importance of the OATP family transporters, modeling and simulation with a physiologically based pharmacokinetic model are helpful.
Pubmed Id: 23115084
25. Barbarino JM et al. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenetics and genomics. 2013
Authors: Barbarino JM Staatz CE Venkataramanan R Klein TE Altman RB
Abstract: No Abstract available
Pubmed Id: 23922006
26. Ivanyuk A et al. Renal Drug Transporters and Drug Interactions. Clinical pharmacokinetics. 2017
Authors: Ivanyuk A Livio F Biollaz J Buclin T
Abstract: Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Pubmed Id: 28210973
27. King SD et al. The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans. Cell death and differentiation. 2019
Authors: King SD Gray CF Song L Nechushtai R Gumienny TL Mittler R Padilla PA
Abstract: Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron-sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The C. elegans genome contains three previously uncharacterized cisd genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the cisd genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.
Pubmed Id: 29666474
28. Kiesel EK et al. An anticholinergic burden score for German prescribers: score development. BMC geriatrics. 2018
Authors: Kiesel EK Hopf YM Drey M
Abstract: BACKGROUND: Anticholinergic drugs put elderly patients at a higher risk for falls, cognitive decline, and delirium as well as peripheral adverse reactions like dry mouth or constipation. Prescribers are often unaware of the drug-based anticholinergic burden (ACB) of their patients. This study aimed to develop an anticholinergic burden score for drugs licensed in Germany to be used by clinicians at prescribing level. METHODS: A systematic literature search in pubmed assessed previously published ACB tools. Quantitative grading scores were extracted, reduced to drugs available in Germany, and reevaluated by expert discussion. Drugs were scored as having no, weak, moderate, or strong anticholinergic effects. Further drugs were identified in clinical routine and included as well. RESULTS: The literature search identified 692 different drugs, with 548 drugs available in Germany. After exclusion of drugs due to no systemic effect or scoring of drug combinations (n = 67) and evaluation of 26 additional identified drugs in clinical routine, 504 drugs were scored. Of those, 356 drugs were categorised as having no, 104 drugs were scored as weak, 18 as moderate and 29 as having strong anticholinergic effects. CONCLUSIONS: The newly created ACB score for drugs authorized in Germany can be used in daily clinical practice to reduce potentially inappropriate medications for elderly patients. Further clinical studies investigating its effect on reducing anticholinergic side effects are necessary for validation.
Pubmed Id: 30305048

epha.ch AG

Stadelhoferstrasse 40 8001 Zürich Schweiz
Github LinkedIn Facebook Twitter
kontakt@epha.ch

Allgemeines

Impressum Datenschutz Nutzungsbedingungen Über uns API

Sprachen

Deutsch English Français Italiano Español
Copyright © 2020 epha.ch - Alle Rechte vorbehalten