Summary
72%
Pharmacokinetic
|
-10% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Amlodipine | |||||||||||
Ciclosporin | |||||||||||
Aliskiren |
Scores | -2% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QT time prolongation
| |||||||||||
Anticholinergic effects
| |||||||||||
Serotonergic effects
|
Adverse drug events
|
-16% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tremor | |||||||||||
Hypertension | |||||||||||
Hirsutism |
Variants ✨
For the computationally intensive evaluation of the variants, please choose the paid standard subscription.
Pharmacokinetics
-10%
∑ Exposurea | aml | cic | ali | |
---|---|---|---|---|
Amlodipine | 1.23 | 1.23 | 1 | |
Ciclosporin | 1.17 | 1.17 | 1 | |
Aliskiren | 4.1 | 1.37 | 3.85 |
Legend (n.a.): Information not available
The changes in exposure mentioned relate to changes in the plasma concentration-time curve [AUC]. Aliskiren exposure increases to 410%, when combined with amlodipine (137%) and ciclosporin (385%). This can lead to increased side effects. Amlodipine exposure increases to 123%, when combined with ciclosporin (123%) and aliskiren (100%). Ciclosporin exposure increases to 117%, when combined with amlodipine (117%) and aliskiren (100%).
Rating:
The pharmacokinetic parameters of the average population are used as the starting point for calculating the individual changes in exposure due to the interactions.
Amlodipine has a mean oral bioavailability [ F ] of 64%, which is why the maximum plasma levels [Cmax] tend to change with an interaction. The terminal half-life [ t12 ] is rather long at 40 hours and constant plasma levels [ Css ] are only reached after more than 160 hours. The protein binding [ Pb ] is 97.5% strong and the volume of distribution [ Vd ] is very large at 1470 liters, Since the substance has a low hepatic extraction rate of 0.30, displacement from protein binding [Pb] in the context of an interaction can increase exposure. The metabolism mainly takes place via CYP3A4 and the active transport takes place in particular via PGP.
Ciclosporin has a low oral bioavailability [ F ] of 27%, which is why the maximum plasma level [Cmax] tends to change strongly with an interaction. The terminal half-life [ t12 ] is 13.35 hours and constant plasma levels [ Css ] are reached after approximately 53.4 hours. The protein binding [ Pb ] is 95.4% strong and the volume of distribution [ Vd ] is very large at 92 liters, Since the substance has a low hepatic extraction rate of 0.24, displacement from protein binding [Pb] in the context of an interaction can increase exposure. The metabolism mainly takes place via CYP3A4 and the active transport takes place in particular via PGP.
Aliskiren has a low oral bioavailability [ F ] of 3%, which is why the maximum plasma level [Cmax] tends to change strongly with an interaction. The terminal half-life [ t12 ] is rather long at 26 hours and constant plasma levels [ Css ] are only reached after more than 104 hours. The protein binding [ Pb ] is rather weak at 49% and the volume of distribution [ Vd ] is very large at 133 liters. Since the substance has a low hepatic extraction rate of 0.14, displacement from protein binding [Pb] in the context of an interaction can increase exposure. About 23.0% of an administered dose is excreted unchanged via the kidneys and this proportion is seldom changed by interactions. The metabolism mainly takes place via CYP3A4 and the active transport takes place partly via OATP1A2, OATP2B1 and PGP.
Serotonergic effects
-0%
Scores | ∑ Points | aml | cic | ali |
---|---|---|---|---|
Serotonergic Effects a | 0 | Ø | Ø | Ø |
Rating: According to our knowledge, neither amlodipine, ciclosporin nor aliskiren increase serotonergic activity.
Anticholinergic effects
-2%
Scores | ∑ Points | aml | cic | ali |
---|---|---|---|---|
Kiesel b | 1 | Ø | + | Ø |
Recommendation: As a precaution, attention should be paid to anticholinergic symptoms, especially after increasing the dose and at doses in the upper therapeutic range.
Rating: Ciclosporin only has a mild effect on the anticholinergic system. The risk of anticholinergic syndrome with this medication is rather low if the dosage is in the usual range. According to our findings, neither amlodipine nor aliskiren increase anticholinergic activity.
QT time prolongation
-0%
We do not know of any QT-prolonging potential for amlodipine, ciclosporin and aliskiren.
General adverse effects
-16%
Side effects | ∑ frequency | aml | cic | ali |
---|---|---|---|---|
Tremor | 33.5 % | n.a. | 33.5 | n.a. |
Hypertension | 33.0 % | n.a. | 33.0 | n.a. |
Hirsutism | 33.0 % | n.a. | 33.0 | n.a. |
Nephrotoxicity | 31.5 % | n.a. | 31.5 | n.a. |
Headache | 14.7 % | + | 10.0 | 4.3↑ |
Hyperlipidemia | 10.0 % | n.a. | 10.0 | n.a. |
Peripheral edema | 7.9 % | 7.9 | n.a. | n.a. |
Hepatotoxicity | 7.0 % | n.a. | 7.0 | n.a. |
Fatigue | 5.5 % | 4.5 | + | n.a. |
Seizure | 3.0 % | n.a. | 3.0 | 0.0↑ |
Sign (+): side effect described, but frequency not known
Sign (↑/↓): frequency rather higher / lower due to exposure
Gastrointestinal
Nausea (2.9%): amlodipine
Diarrhea (2.3%): aliskiren
Abdominal pain (1.6%): amlodipine
Gingival hypertrophy: ciclosporin
Neurological
Dizziness (2%): aliskiren, amlodipine
Somnolence (1.4%): amlodipine
Paresthesia: ciclosporin
Encephalopathy: ciclosporin
Progressive multifocal leukoencephalopathy: ciclosporin
Cardiac
Palpitations (1.5%): amlodipine
Hypotension: aliskiren
Electrolytes
Hyperkalemia: aliskiren, ciclosporin
Hypomagnesemia: ciclosporin
Renal
Elevated serum creatinine: aliskiren
Renal failure: aliskiren
Hemolytic uremic syndrome: ciclosporin
Hematological
Leukopenia: ciclosporin, amlodipine
Thrombocytopenia: amlodipine
Immunological
Infection: ciclosporin
Allergic skin reactions like pruritus and rash: aliskiren
Angioedema: aliskiren
Metabolic
Hyperglycemia: ciclosporin
Hyperuricemia: aliskiren
Ophthalmological
Burning sensation in eye: ciclosporin
Conjunctivitis: ciclosporin
Pain in eye: ciclosporin
Dermatological
Flushing: amlodipine
Stevens johnson syndrome: aliskiren
Toxic epidermal necrolysis: aliskiren
Respiratory
Dyspnea: amlodipine
Limitations
Based on your
References
Abstract: The pharmacokinetics of cyclosporine was studied in six healthy volunteers after administration of the drug orally (10 mg/kg) and intravenously (3 mg/kg) with and without concomitant rifampin administration. Both blood and plasma (separated at 37 degrees C) samples were analyzed for cyclosporine concentration. For blood and plasma, respectively, clearances of cyclosporine were calculated to be 0.30 and 0.55 L/hr/kg, values for volume of distribution at steady state were 1.31 and 1.68 L/kg, and bioavailabilities were 27% and 33% during the pre-rifampin phase. Post-rifampin phase clearances of cyclosporine were 0.42 and 0.79 L/hr/kg, values for volume of distribution at steady state were 1.36 and 1.35 L/kg, and bioavailabilities were 10% and 9% for blood and plasma, respectively. Rifampin not only induces the hepatic metabolism of cyclosporine but also decreases its bioavailability to a greater extent than would be predicted by the increased metabolism. The decreased bioavailability most probably can be explained by an induction of intestinal cytochrome P450 enzymes, which appears to be markedly greater than the induction of hepatic metabolism.
Abstract: Amlodipine is a dihydropyridine calcium antagonist drug with distinctive pharmacokinetic characteristics which appear to be attributable to a high degree of ionisation. Following oral administration, bioavailability is 60 to 65% and plasma concentrations rise gradually to peak 6 to 8h after administration. Amlodipine is extensively metabolised in the liver (but there is no significant presystemic or first-pass metabolism) and is slowly cleared with a terminal elimination half-life of 40 to 50h. Volume of distribution is large (21 L/kg) and there is a high degree of protein binding (98%). There is some evidence that age, severe hepatic impairment and severe renal impairment influence the pharmacokinetic profile leading to higher plasma concentrations and longer half-lives. There is no evidence of pharmacokinetic drug interactions. Amlodipine shows linear dose-related pharmacokinetic characteristics and, at steady-state, there are relatively small fluctuations in plasma concentrations across a dosage interval. Thus, although structurally related to other dihydropyridine derivatives, amlodipine displays significantly different pharmacokinetic characteristics and is suitable for administration in a single daily dose.
Abstract: 1. The pharmacokinetics of cyclosporine (CsA) and the time course of CsA metabolites were studied in five bone marrow transplant patients after intravenous (i.v.) administration on two separate occasions and once after oral CsA administration. 2. Cyclosporine and cyclosporine metabolites were measured in whole blood by h.p.l.c. 3. Cyclosporine clearance after i.v. administration decreased from 3.9 +/- 1.7 ml min-1 kg-1 to 2.0 +/- 0.6 ml min-1 kg-1 after 14 days of treatment. The mean +/- s.d. absolute oral bioavailability of cyclosporine was 17 +/- 11%. 4. Hydroxylated CsA (M-17) was the major metabolite in blood. There were no significant differences in the mean metabolite/CsA AUC ratios between the first and second i.v. studies. 5. After oral administration, the metabolite to CsA AUC ratios were higher for most metabolites compared to those observed in the second i.v. study, suggesting a contribution of intestinal metabolism to the clearance of CsA.
Abstract: Extensive pharmacokinetic (PK) profiles after oral dosing of 300 mg cyclosporin A (CsA) were determined in whole blood by radioimmunoassay (RIA) in 14 healthy male volunteers, using two-compartment models with either first order (M1) or zero order (M0) absorption. According to zero order absorption the mean of the following PK parameters was determined: terminal half-life = 12.1 +/- 5.0 h, apparent volume of distribution at steady-state = 5.6 +/- 2.11 X kg-1, apparent clearance = 0.51 +/- 0.11 l X h-1 X kg-1. The time lag between drug ingestion and first blood level was short, 0.38 +/- 0.11 h. Drug absorption lasted for 2.8 +/- 1.6 h. The end of absorption was indicated in each individual by a sharp drop in blood levels. The observations support the assumption that CsA is absorbed in the upper part of the small intestine with a clear-cut termination (absorption window). This assumption may explain the high degree of variability in the bioavailability of CsA.
Abstract: OBJECTIVE: This study was performed to assess whether coadministration with grapefruit juice significantly affects the pharmacokinetics of amlodipine, a dihydropyridine class calcium antagonist with slow absorption, distribution and low plasma clearance. The primary objective was to evaluate whether short exposure to grapefruit juice could affect the metabolism of amlodipine to an extent similar to that previously demonstrated for other dihydropyridines (e.g. felodipine, nisoldipine, nitrendipine). METHODS: Twelve healthy male volunteers followed a randomised, open crossover study design, comparing the effect of a single oral dose of amlodipine (5 mg) taken together with a glass of grapefruit juice (250 ml) vs water. Blood samples to determine plasma concentration were taken and blood pressure (BP) and heart rate (HR) were measured throughout the study. RESULTS: When amlodipine was coadministered with grapefruit juice, Cmax was 115% and AUC(0-72 h) was 116% compared with water, but tmax was not significantly changed. There were no significant differences in BP and HR between the two treatments. A small decrease in diastolic BP, however, was observed in both treatments 4-8 h after drug administration, coinciding with Cmax, but this was normalised after 12 h. The BP reduction seen was compensated by a slight increase in HR, which remained throughout the study. CONCLUSION: An interaction between grapefruit juice and amlodipine was demonstrated. The haemodynamic data showed that a dose of 5 mg was sufficient to achieve a BP reduction in healthy subjects, but the increase in amlodipine plasma concentration seen after intake of grapefruit juice was too small to significantly affect BP or HR. The clinical significance of this food/drug interaction, however, cannot be ignored since there is considerable variation between individuals and a more extensive intake of grapefruit juice might give more pronounced effects.
Abstract: In drug discovery and nonclinical development the volume of distribution at steady state (V(ss)) of each novel drug candidate is commonly determined under in vivo conditions. Therefore, it is of interest to predict V(ss) without conducting in vivo studies. The traditional description of V(ss) corresponds to the sum of the products of each tissue:plasma partition coefficient (P(t:p)) and the respective tissue volume in addition to the plasma volume. Because data on volumes of tissues and plasma are available in the literature for mammals, the other input parameters needed to estimate V(ss) are the P(t:p)'s, which can potentially be predicted with established tissue composition-based equations. In vitro data on drug lipophilicity and plasma protein binding are the input parameters used in these equations. Such a mechanism-based approach would be particularly useful to provide first-cut estimates of V(ss) prior to any in vivo studies and to explore potential unexpected deviations between sets of predicted and in vivo V(ss) data, when the in vivo data become available during the drug development process. The objective of the present study was to use tissue composition-based equations to predict rat and human V(ss) prior to in vivo studies for 123 structurally unrelated compounds (acids, bases, and neutrals). The predicted data were compared with in vivo data obtained from the literature or at Roche. Overall, the average ratio of predicted-to-experimental rat and human V(ss) values was 1.06 (SD = 0.817, r = 0.78, n = 147). In fact, 80% of all predicted values were within a factor of two of the corresponding experimental values. The drugs can therefore be separated into two groups. The first group contains 98 drugs for which the predicted V(ss) were within a factor of two of those experimentally determined (average ratio of 1.01, SD = 0.39, r = 0.93, n = 118), and the second group includes 25 other drugs for which the predicted and experimental V(ss) differ by a factor larger than two (average ratio of 1.32, SD = 1.74, r = 0.42, n = 29). Thus, additional relevant distribution processes were neglected in predicting V(ss) of drugs of the second group. This was true especially in the case of some cationic-amphiphilic bases. The present study is the first attempt to develop and validate a mechanistic distribution model for predicting rat and human V(ss) of drugs prior to in vivo studies.
Abstract: Cyclosporine and tacrolimus share the same pharmacodynamic property of activated T-cell suppression via inhibition of calcineurin. The introduction of these drugs to the immunosuppressive repertoire of transplant management has greatly improved the outcomes in organ transplantation and constitutes arguably one of the major breakthroughs in modern medicine. To this date, calcineurin inhibitors are the mainstay of prevention of allograft rejection. The experience gained from the laboratory and clinical use of cyclosporine and tacrolimus has greatly advanced our knowledge about the nature of many aspects of immune response. However, the clinical practice still struggles with the shortcomings of these drugs: the significant inter- and intraindividual variability of their pharmacokinetics, the unpredictability of their pharmacodynamic effects, as well as complexity of interactions with other agents in transplant recipients. This article briefly reviews the pharmacological aspects of calcineurin antagonists as they relate to the mode of action and pharmacokinetics as well as drug interactions and monitoring.
Abstract: BACKGROUND: Aliskiren is an orally active direct renin inhibitor approved for the treatment of hypertension. This study assessed the effects of renal impairment on the pharmacokinetics and safety of aliskiren alone and in combination with the angiotensin receptor antagonist irbesartan. METHODS: This open-label study enrolled 17 males with mild, moderate or severe renal impairment (creatinine clearance [CL(CR)] 50-80, 30-49 and <30 mL/minute, respectively) and 17 healthy males matched for age and bodyweight. Subjects received oral aliskiren 300 mg once daily on days 1-7 and aliskiren coadministered with irbesartan 300 mg on days 8-14. Plasma aliskiren concentrations were determined by high-performance liquid chromatography/tandem mass spectrometry at frequent intervals up to 24 hours after dosing on days 1, 7 and 14. RESULTS: Renal clearance of aliskiren averaged 1280 +/- 500 mL/hour (mean +/- SD) in healthy subjects and 559 +/- 220, 312 +/- 75 and 243 +/- 186 mL/hour in patients with mild, moderate and severe renal impairment, respectively. At steady state (day 7), the geometric mean ratios (renal impairment : matched healthy volunteers) ranged from 1.21 to 2.05 for the area under the plasma concentration-time curve (AUC) over the dosage interval tau (24h) [AUC(tau)]) and from 0.83 to 2.25 for the maximum observed plasma concentration of aliskiren at steady state. Changes in exposure did not correlate with CL(CR), consistent with an effect of renal impairment on non-renal drug disposition. The observed large intersubject variability in aliskiren pharmacokinetic parameters was unrelated to the degree of renal impairment. Accumulation of aliskiren at steady state (indicated by the AUC from 0 and 24 hours [AUC(24)] on day 7 vs day 1) was similar in healthy subjects (1.79 [95% CI 1.24, 2.60]) and those with renal impairment (range 1.39-1.99). Coadministration with irbesartan did not alter the pharmacokinetics of aliskiren. Aliskiren was well tolerated when administered alone or with irbesartan. CONCLUSIONS: Exposure to aliskiren is increased by renal impairment but does not correlate with the severity of renal impairment (CL(CR)). This is consistent with previous data indicating that renal clearance of aliskiren represents only a small fraction of total clearance. Initial dose adjustment of aliskiren is unlikely to be required in patients with renal impairment.
Abstract: This study investigated the potential pharmacokinetic interaction between the direct renin inhibitor aliskiren and modulators of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Aliskiren stimulated in vitro P-glycoprotein ATPase activity in recombinant baculovirus-infected Sf9 cells with high affinity (K(m) 2.1 micromol/L) and was transported by organic anion-transporting peptide OATP2B1-expressing HEK293 cells with moderate affinity (K(m) 72 micromol/L). Three open-label, multiple-dose studies in healthy subjects investigated the pharmacokinetic interactions between aliskiren 300 mg and digoxin 0.25 mg (n = 22), atorvastatin 80 mg (n = 21), or ketoconazole 200 mg bid (n = 21). Coadministration with aliskiren resulted in changes of <30% in AUC(tau) and C(max,ss) of digoxin, atorvastatin, o-hydroxy-atorvastatin, and rho-hydroxy-atorvastatin, indicating no clinically significant interaction with P-glycoprotein or CYP3A4 substrates. Aliskiren AUC(tau) was significantly increased by coadministration with atorvastatin (by 47%, P < .001) or ketoconazole (by 76%, P < .001) through mechanisms most likely involving transporters such as P-glycoprotein and organic anion-transporting peptide and possibly through metabolic pathways such as CYP3A4 in the gut wall. These results indicate that aliskiren is a substrate for but not an inhibitor of P-glycoprotein. On the basis of the small changes in exposure to digoxin and atorvastatin and the <2-fold increase in exposure to aliskiren during coadministration with atorvastatin and ketoconazole, the authors conclude that the potential for clinically relevant drug interactions between aliskiren and these substrates and/or inhibitors of P-glycoprotein/CPY3A4/OATP is low.
Abstract: Although therapeutic drug monitoring (TDM) of immunosuppressive drugs has been an integral part of routine clinical practice in solid organ transplantation for many years, ongoing research in the field of immunosuppressive drug metabolism, pharmacokinetics, pharmacogenetics, pharmacodynamics, and clinical TDM keeps yielding new insights that might have future clinical implications. In this review, the authors will highlight some of these new insights for the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus and the antimetabolite mycophenolic acid (MPA) and will discuss the possible consequences. For CNIs, important relevant lessons for TDM can be learned from the results of 2 recently published large CNI minimization trials. Furthermore, because acute rejection and drug-related adverse events do occur despite routine application of CNI TDM, alternative approaches to better predict the dose-concentration-response relationship in the individual patient are being explored. Monitoring of CNI concentrations in lymphocytes and other tissues, determination of CNI metabolites, and CNI pharmacogenetics and pharmacodynamics are in their infancy but have the potential to become useful additions to conventional CNI TDM. Although MPA is usually administered at a fixed dose, there is a rationale for MPA TDM, and this is substantiated by the increasing knowledge of the many nongenetic and genetic factors contributing to the interindividual and intraindividual variability in MPA pharmacokinetics. However, recent, large, randomized clinical trials investigating the clinical utility of MPA TDM have reported conflicting data. Therefore, alternative pharmacokinetic (ie, MPA free fraction and metabolites) and pharmacodynamic approaches to better predict drug efficacy and toxicity are being explored. Finally, for MPA and tacrolimus, novel formulations have become available. For MPA, the differences in pharmacokinetic behavior between the old and the novel formulation will have implications for TDM, whereas for tacrolimus, this probably will not to be the case.
Abstract: This 12-week, multicenter, open-label study assessed the efficacy, pharmacokinetics and safety of a once-daily aliskiren in Japanese hypertensive patients with renal dysfunction. Patients (n=40, aged 20-80 years) with mean sitting diastolic blood pressure (msDBP) >or=95 and <110 mm Hg and serum creatinine between >or=1.3 and <3.0 mg per 100 ml in males or between >or=1.2 and <3.0 mg per 100 ml in females were eligible. Patients began therapy with a once-daily morning oral dose of 75 mg of aliskiren. In patients with inadequate blood pressure control (msDBP >or=90 or mean sitting systolic blood pressure [msSBP] >or=140 mm Hg) and without safety concerns (serum potassium >5.5 mEq l(-1) or an increase in serum creatinine >or=20%), the aliskiren dose was increased to 150 mg and then to 300 mg in sequential steps starting from Week 2. Efficacy was assessed as change in msSBP/msDBP from baseline to the Week 8 endpoint (with the last observation carried forward). The mean reduction from baseline to Week 8 endpoint was 13.9+/-16.6 and 11.6+/-9.7 mm Hg for msSBP and msDBP, respectively. At the Week 8 endpoint, 65% patients had achieved blood pressure response (msDBP <90 or a 10 mm Hg decrease or msSBP <140 or a 20 mm Hg decrease) and 30% had achieved blood pressure control (msSBP <140 mm Hg and msDBP <90 mm Hg). Aliskiren was well tolerated with no new safety concerns in Japanese hypertensive patients with renal dysfunction.
Abstract: In a randomized crossover study, 11 healthy volunteers took 100 mg (first dose 200 mg) of the antifungal drug itraconazole, a P-glycoprotein and CYP3A4 inhibitor, or placebo twice daily for 5 days. On day 3, they ingested a single 150-mg dose of aliskiren, a renin inhibitor used in the treatment of hypertension. Itraconazole raised the peak plasma aliskiren concentration 5.8-fold (range, 1.1- to 24.3-fold; P < .001) and the area under the plasma aliskiren concentration-time curve 6.5-fold (range, 2.6- to 20.5-fold; P < .001) but had no significant effect on aliskiren elimination half-life. Itraconazole increased the amount of aliskiren excreted into the urine during 12 hours 8.0-fold (P < .001) and its renal clearance 1.2-fold (P = .042). Plasma renin activity 24 hours after aliskiren intake was 68% lower during the itraconazole phase than during the placebo phase (P = .011). In conclusion, itraconazole markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. The interaction is probably mainly explained by inhibition of the P-glycoprotein-mediated efflux of aliskiren in the small intestine, with a minor contribution from inhibition of CYP3A4. Concomitant use of aliskiren and itraconazole is best avoided.
Abstract: The authors describe the drug-drug interaction between aliskiren and verapamil in healthy participants. Eighteen participants first received an oral dose of aliskiren 300 mg (highest recommended clinical dose) in period 1. After a 10-day washout period, the participants received verapamil 240 mg/d for 8 days (period 2). On day 8, the participants also received an oral dose of aliskiren 300 mg. Safety and pharmacokinetic analyses were performed during each treatment period. Concomitant administration of a single dose of aliskiren during steady-state verapamil resulted in an increase in plasma concentration of aliskiren. The mean increase in AUC(0-∞), AUC(last), and C(max) was about 2-fold. On day 8, in the presence of aliskiren, AUC(τ,ss) of R-norverapamil, R-verapamil, S-norverapamil, and S-verapamil was decreased by 10%, 16%, 10%, and 25%, respectively. Similarly, the C(max,ss) of R-norverapamil, R-verapamil, S-norverapamil, and S-verapamil was decreased by 13%, 18%, 12%, and 24%, respectively. Aliskiren did not affect the AUC(τ,ss) ratios of R-norverapamil/R-verapamil and S-norverapamil/S-verapamil. Aliskiren administered alone or in combination with verapamil was well tolerated in healthy participants. In conclusion, no dose adjustment is necessary when aliskiren is administered with moderate ABCB1 inhibitors such as verapamil (240 mg/d).
Abstract: To explore the clinical relevance of inhibition of multidrug resistance transporter 1 and organic anion transporting polypeptide transporter, a drug-drug interaction study was conducted using aliskiren and cyclosporine. This was an open-label, single-sequence, parallel-group, single-dose study in healthy subjects. Subjects (n = 14) first received aliskiren 75 mg orally (period 1), followed by aliskiren 75 mg + cyclosporine 200 mg (period 2) after a 7-day washout period, and aliskiren 75 mg + cyclosporine 600 mg (period 3) after a 14-day washout period. Safety and pharmacokinetics were analyzed during each period. The primary objective was to characterize pharmacokinetics of aliskiren (single-dose and combination with cyclosporine). The increases in area under the time-concentration curve from time 0 to infinity and maximum concentration associated with cyclosporine 200 mg or 600 mg were 4- to 5-fold and 2.5-fold, respectively. Mean half-life increased from 25 to 45 hours. Based on comparison to literature, a single-dose of aliskiren 75 mg did not alter the pharmacokinetics of cyclosporine. Aliskiren 75 mg was well tolerated. Combination with cyclosporine increased the number of adverse events, mainly hot flush and gastrointestinal symptoms, with no serious adverse events. Two adverse events led to withdrawal (ligament rupture, not suspected to be study-drug related; and vomiting, suspected to be study-drug related). Laboratory parameters, vital signs, and electrocardiographs showed no time- or treatment-related changes. As cyclosporine significantly altered the pharmacokinetics of aliskiren in humans, its use with aliskiren is not recommended.
Abstract: Telaprevir is a hepatitis C virus protease inhibitor that is both a substrate and an inhibitor of CYP3A. Amlodipine and atorvastatin are both substrates of CYP3A and are among the drugs most frequently used by patients with hepatitis C. This study was conducted to examine the effect of telaprevir on atorvastatin and amlodipine pharmacokinetics (PK). This was an open-label, single sequence, nonrandomized study involving 21 healthy male and female volunteers. A coformulation of 5 mg amlodipine and 20 mg atorvastatin was administered on day 1. Telaprevir was taken with food as a 750-mg dose every 8 h from day 11 until day 26, and a single dose of the amlodipine-atorvastatin combination was readministered on day 17. Plasma samples were collected for determination of the PK of telaprevir, amlodipine, atorvastatin, ortho-hydroxy atorvastatin, and para-hydroxy atorvastatin. When administration with telaprevir was compared with administration without telaprevir, the least-square mean ratios (90% confidence limits) for amlodipine were 1.27 (1.21, 1.33) for the maximum drug concentration in serum (C(max)) and 2.79 (2.58, 3.01) for the area under the concentration-time curve from 0 h to infinity (AUC(0-∞)); for atorvastatin, they were 10.6 (8.74, 12.9) for the C(max) and 7.88 (6.84, 9.07) for the AUC(0-∞). Telaprevir significantly increased exposure to amlodipine and atorvastatin, consistent with the inhibitory effect of telaprevir on the CYP3A-mediated metabolism of these agents.
Abstract: The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Abstract: BACKGROUND AND OBJECTIVES: Aliskiren represents a novel class of orally active renin inhibitors. This study analyses the pharmacokinetics, tolerability and safety of single-dose aliskiren inpatients with end-stage renal disease (ESRD) undergoing haemodialysis. METHODS: Six ESRD patients and six matched healthy volunteers were enrolled in an open-label, parallel-group, single-sequence study. The ESRD patients underwent two treatment periods where 300 mg of aliskiren was administered 48 or 1 h before a standardized haemodialysis session (4 h, 1.4 m(2) high-flux filter, blood flow 300 mL/min, dialysate flow 500 mL/min). Washout was >10 days between both periods. Blood and dialysis samples were taken for up to 96 h postdose to determine aliskiren concentrations. RESULTS: Compared with the healthy subjects (1681 ± 1034 ng·h/mL), the area under the plasma concentration-time curve (AUC) from time zero to infinity was 61% (haemodialysis at 48 h) and 41% (haemodialysis at 1 h) higher in ESRD patients receiving single-dose aliskiren 300 mg. The maximum (peak) plasma drug concentration (481 ± 497 ng/mL in healthy subjects) was 17% higher (haemodialysis at 48 h) and 16% lower (haemodialysis at 1 h). In both treatment periods, dialysis clearance was below 2% of oral clearance and the mean fraction eliminated from circulation was 10 and 12% in period 1 and 2, respectively. Drug AUCs were similar in ESRD patients receiving aliskiren 1 or 48 h before dialysis. No severe adverse events occurred. CONCLUSION: The exposure of aliskiren is moderately higher in ESRD patients. Only a minor portion is removed by a typical haemodialysis session. Aliskiren exposure is not significantly affected by intermittent haemodialysis, suggesting that no dose adjustment is necessary in this population.
Abstract: Organic anion transporting polypeptide (OATP) family transporters accept a number of drugs and are increasingly being recognized as important factors in governing drug and metabolite pharmacokinetics. OATP1B1 and OATP1B3 play an important role in hepatic drug uptake while OATP2B1 and OATP1A2 might be key players in intestinal absorption and transport across blood-brain barrier of drugs, respectively. To understand the importance of OATPs in the hepatic clearance of drugs, the rate-determining process for elimination should be considered; for some drugs, hepatic uptake clearance rather than metabolic intrinsic clearance is the more important determinant of hepatic clearances. The importance of the unbound concentration ratio (liver/blood), K(p,uu) , of drugs, which is partly governed by OATPs, is exemplified in interpreting the difference in the IC(50) of statins between the hepatocyte and microsome systems for the inhibition of HMG-CoA reductase activity. The intrinsic activity and/or expression level of OATPs are affected by genetic polymorphisms and drug-drug interactions. Their effects on the elimination rate or intestinal absorption rate of drugs may sometimes depend on the substrate drug. This is partly because of the different contribution of OATP isoforms to clearance or intestinal absorption. When the contribution of the OATP-mediated pathway is substantial, the pharmacokinetics of substrate drugs should be greatly affected. This review describes the estimation of the contribution of OATP1B1 to the total hepatic uptake of drugs from the data of fold-increases in the plasma concentration of substrate drugs by the genetic polymorphism of this transporter. To understand the importance of the OATP family transporters, modeling and simulation with a physiologically based pharmacokinetic model are helpful.
Abstract: No Abstract available
Abstract: Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Abstract: Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron-sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The C. elegans genome contains three previously uncharacterized cisd genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the cisd genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.
Abstract: BACKGROUND: Anticholinergic drugs put elderly patients at a higher risk for falls, cognitive decline, and delirium as well as peripheral adverse reactions like dry mouth or constipation. Prescribers are often unaware of the drug-based anticholinergic burden (ACB) of their patients. This study aimed to develop an anticholinergic burden score for drugs licensed in Germany to be used by clinicians at prescribing level. METHODS: A systematic literature search in pubmed assessed previously published ACB tools. Quantitative grading scores were extracted, reduced to drugs available in Germany, and reevaluated by expert discussion. Drugs were scored as having no, weak, moderate, or strong anticholinergic effects. Further drugs were identified in clinical routine and included as well. RESULTS: The literature search identified 692 different drugs, with 548 drugs available in Germany. After exclusion of drugs due to no systemic effect or scoring of drug combinations (n = 67) and evaluation of 26 additional identified drugs in clinical routine, 504 drugs were scored. Of those, 356 drugs were categorised as having no, 104 drugs were scored as weak, 18 as moderate and 29 as having strong anticholinergic effects. CONCLUSIONS: The newly created ACB score for drugs authorized in Germany can be used in daily clinical practice to reduce potentially inappropriate medications for elderly patients. Further clinical studies investigating its effect on reducing anticholinergic side effects are necessary for validation.