epha.health
Feedback
New Case
Register
busy
3
Drugs
|
0
Findings
|
Advice

Pharmacological advice for alprazolam, cimetidine and rifampicin

plan
Print
Version 6.0.32 (Beta Preview)

Summary Summary info 56%

Pharmacokinetic -16%
Alprazolam
Cimetidine
Rifampicin
Scores -7%
QT time prolongation
Anticholinergic effects
Serotonergic effects
Adverse drug events -21%
Somnolence
Sedation
Fatigue

Variants ✨

For the computationally intensive evaluation of the variants, please choose the paid standard subscription.

medication Intended use

Explanations of the substances for patients

undefined Pharmacokinetics info -16%

∑ Exposureaalpcimrif
Alprazolam 0.18 1.18 0.17
Cimetidine n.a.n.a.n.a.
Rifampicin n.a.n.a.n.a.
Symbol (a): x-fold change in AUC
Legend (n.a.): Information not available

The changes in exposure mentioned relate to changes in the plasma concentration-time curve [AUC]. Alprazolam exposure is reduced to 18%, when combined with cimetidine (118%) and rifampicin (17%). This can be associated with reduced effectiveness. We did not detect any change in exposure to cimetidine. We cannot currently estimate the influence of alprazolam and rifampicin. We did not detect any change in exposure to rifampicin. We cannot currently estimate the influence of alprazolam and cimetidine.

Rating: The pharmacokinetic parameters of the average population are used as the starting point for calculating the individual changes in exposure due to the interactions.
Alprazolam has a high oral bioavailability [ F ] of 88%, which is why the maximum plasma levels [Cmax] tend to change little during an interaction. The terminal half-life [ t12 ] is 11.7 hours and constant plasma levels [ Css ] are reached after approximately 46.8 hours. The protein binding [ Pb ] is moderately strong at 70.2% and the volume of distribution [ Vd ] is 50 liters in the middle range, Since the substance has a low hepatic extraction rate of 0.04, displacement from protein binding [Pb] in the context of an interaction can increase exposure. The metabolism mainly takes place via CYP3A4.
Cimetidine has a mean oral bioavailability [ F ] of 65%, which is why the maximum plasma levels [Cmax] tend to change with an interaction. The terminal half-life [ t12 ] is rather short at 1.6333333 hours and constant plasma levels [ Css ] are reached quickly. The protein binding [ Pb ] is very weak at 19% and the volume of distribution [ Vd ] is very large at 91 liters. The metabolism does not take place via the common cytochromes and the active transport takes place partly via BCRP and PGP.
Rifampicin has a high oral bioavailability [ F ] of 90%, which is why the maximum plasma levels [Cmax] tend to change little during an interaction. The terminal half-life [ t12 ] is rather short at 3.5 hours and constant plasma levels [ Css ] are reached quickly. The protein binding [ Pb ] is moderately strong at 75% and the volume of distribution [ Vd ] is very large at 101 liters. The metabolism does not take place via the common cytochromes and the active transport takes place partly via OATP1B1, OATP1B3 and PGP.

transmitter Serotonergic effects info -0%

Scores ∑ Points alpcimrif
Serotonergic Effects a 0 Ø Ø Ø
Symbol (a): Increased risk from 5 points.

Rating: According to our knowledge, neither alprazolam, cimetidine nor rifampicin increase serotonergic activity.

transmitter Anticholinergic effects info -7%

Scores ∑ Points alpcimrif
Kiesel b 3+++Ø
Symbol (b): Increased risk from 3 points.

Recommendation: The risk of anticholinergic side effects such as blurred vision, confusion and tremor is increased with this therapy. If possible, the therapy should be switched or the patient should be closely monitored for other symptoms Constipation, mydriasis and reduced vigilance are monitored.

Rating: Together, cimetidine (moderate) and alprazolam (mild) increase anticholinergic activity. According to our findings, rifampicin does not increase anticholinergic activity.

electrocardiogram QT time prolongation info -0%

Scores ∑ Points alpcimrif
RISK-PATH c 0.25Ø+Ø
Symbol (c): Increased risk from 10 points.

Recommendation: Please make sure that influenceable risk factors are minimized. Electrolyte disturbances such as low levels of calcium, potassium and magnesium should be compensated for. The lowest effective dose of cimetidine should be used.

Rating: Cimetidine can potentially prolong the QT time and if there are risk factors, arrhythmias of the type torsades de pointes can be favored. We do not know of any QT-prolonging potential for alprazolam and rifampicin.

Other side effects General adverse effects info -21%

Side effects ∑ frequency alpcimrif
Somnolence50.4 %49.9↓n.a.+
Sedation45.2 %45.2↓n.a.n.a.
Fatigue31.3 %31.3↓n.a.n.a.
Coordination problem24.8 %24.8↓n.a.n.a.
Memory impairment24.3 %24.3↓n.a.n.a.
Dizziness20.8 %20.8↓n.a.n.a.
Increased appetite19.9 %19.9↓n.a.n.a.
Constipation17.1 %17.1↓n.a.n.a.
Dysarthria17.1 %17.1↓n.a.n.a.
Weight gain14.9 %14.9↓n.a.n.a.
Tabular extract of the most common side effects
Sign (+): side effect described, but frequency not known
Sign (↑/↓): frequency rather higher / lower due to exposure

Gastrointestinal
Xerostomia (12.4%): alprazolam
Diarrhea: rifampicin
Loss of appetite: rifampicin
Nausea: rifampicin
Pancreatitis: cimetidine, rifampicin

Mental
Depression (11.7%): alprazolam
Irritability: alprazolam
Rebound effect: alprazolam
Psychosis: cimetidine
Addiction: alprazolam

Reproductive system
Reduced libido (10.2%): alprazolam

Hepatic
Elevated alkaline phosphatase (10%): rifampicin
Elevated GGT (10%): rifampicin
Elevated transaminases (10%): rifampicin
Liver failure: alprazolam, rifampicin
Hepatomegaly: rifampicin
Jaundice: rifampicin

Neurological
Confusion (6%): alprazolam

Metabolic
Gynecomastia (4%): cimetidine

Immunological
Urticaria: rifampicin
Anaphylactic reaction: rifampicin

Systemic
Fever: rifampicin

Dermatological
Stevens johnson syndrome: alprazolam

Hematological
Thrombotic thrombocytopenic purpura: rifampicin

Ophthalmological
Optic neuritis: rifampicin

Limitations Limitations

Based on your and scientific information, we assess the individual risk of undesirable side effects. The orange filled bars signal the basic potential of the drugs to cause this side effect. These recommendations are intended to advise professionals and are not a substitute for consultation with a doctor. In the restricted test version (alpha), the risk of all substances has not yet been conclusively assessed.

literature References

1. Fraser AD et al. Urinary screening for alprazolam and its major metabolites by the Abbott ADx and TDx analyzers with confirmation by GC/MS. Journal of analytical toxicology.
Authors: Fraser AD Bryan W Isner AF
Abstract: Alprazolam is a short-acting triazolobenzodiazepine with anxiolytic and antidepressant properties. It has a half-life of 10-15 hours after multiple oral doses. Approximately 20% of an oral dose is excreted unchanged in the urine. The major urinary metabolites are alpha-OH alprazolam glucuronide and 3-HMB benzophenone glucuronide. The objective of this study was to characterize the reactivity of alprazolam and three metabolites in the Abbott ADx and TDx urinary benzodiazepine assays compared with the EMIT d.a.u. benzodiazepine assay. Alprazolam (at 300 ng/mL) gave an equivalent response as the 300 ng/mL low control (nordiazepam). alpha-OH alprazolam gave an equivalent response to this control between 300-500 ng/mL and 4-OH alprazolam between 500-1000 ng/mL. The 3-HMB benzophenone was not positive even at 10,000 ng/mL. The ADx screening assay was positive in 26 of 31 urine specimens collected from alprazolam-treated patients. All 31 of these specimens were confirmed positive for alpha-OH alprazolam by GC/MS after enzymatic hydrolysis and formation of a TMS derivative. For the TDx, 27 of 31 specimens were positive for benzodiazepines and all 31 were confirmed by GC/MS. All 5 of the negative ADx specimens and 4 of 5 TDx specimens contained 150-400 ng/mL of alpha-OH alprazolam. In conclusion, both the ADx and TDx urine benzodiazepine assays are acceptable screening assays for alprazolam use when the alpha-OH alprazolam concentration is greater than 400 ng/mL.
Pubmed Id: 2046338
2. Loos U et al. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klinische Wochenschrift. 1985
Authors: Loos U Musch E Jensen JC Mikus G Schwabe HK Eichelbaum M
Abstract: We investigated the pharmacokinetics of rifampicin and its major metabolites, 25-desacetylrifampicin and 3-formylrifampicin, in two groups of six patients with active pulmonary tuberculosis, who received either multiple oral or intravenous rifampicin therapy in combination with intravenous isoniazid and ethambutol. Serum concentrations of rifampicin were each determined after a single oral and intravenous test dose of 600 mg rifampicin at the beginning and after 1 and 3 weeks of tuberculostatic treatment. Analysis of rifampicin and its metabolites was performed by high-pressure liquid chromatography. It was found that, due to autoinduction of its metabolizing hepatic enzymes, the systemic clearance of rifampicin increased from 5.69 to 9.03 l/h after 3 weeks of multiple dosing. The volume of distribution of the drug was constant over the period of this study. The bioavailability of the active, orally administered rifampicin decreased from 93% after the first single oral dose to 68% after 3 weeks of oral and intravenous rifampicin therapy. Relating to the increase in systemic (hepatic) clearance, a bioavailability no lower than 90% can be predicted. The reduction to 68% indicates that, in addition to an increase of hepatic metabolism, an induction of a prehepatic "first-pass" effect resulted from multiple rifampicin doses. Our study of rifampicin metabolites confirm that prehepatic metabolism was induced, since a higher metabolic ratio resulted after the oral doses than after the intravenous rifampicin test doses. A preabsorptive process can therefore be excluded as a cause of reduced bioavailability.
Pubmed Id: 4087830
3. Fawcett JA et al. Alprazolam: pharmacokinetics, clinical efficacy, and mechanism of action. Pharmacotherapy.
Authors: Fawcett JA Kravitz HM
Abstract: Alprazolam, a triazolobenzodiazepine, is the first of this new class of benzodiazepine drugs to be marketed in the United States and Canada. It achieves peak serum levels in 0.7 to 2.1 hours and has a serum half-life of 12 to 15 hours. When given in the recommended daily dosage of 0.5 to 4.0 mg, it is as effective as diazepam and chlordiazepoxide as an anxiolytic agent. Its currently approved indication is for the treatment of anxiety disorders and symptoms of anxiety, including anxiety associated with depression. Although currently not approved for the treatment of depressive disorders, studies published to date have demonstrated that alprazolam compares favorably with standard tricyclic antidepressants. Also undergoing investigation is the potential role of alprazolam in the treatment of panic disorders. Alprazolam has been used in elderly patients with beneficial results and a low frequency of adverse reactions. Its primary side effect, drowsiness, is less than that produced by diazepam at comparable doses. Data on toxicity, tolerance, and withdrawal profile are limited, but alprazolam seems to be at least comparable to other benzodiazepines. Drug interaction data are also limited, and care should be exercised when prescribing alprazolam for patients taking other psychotropic drugs because of potential additive depressant effects.
Pubmed Id: 6133268
4. Smith RB et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology. 1984
Authors: Smith RB Kroboth PD Vanderlugt JT Phillips JP Juhl RP
Abstract: Six fasting male subjects (20-32 years of age) received an oral tablet and an IV 1.0-mg dose of alprazolam in a crossover-design study. Alprazolam plasma concentration in multiple samples during 36 h after dosing was determined by electron-capture gas-liquid chromatography. Psychomotor performance tests, digit-symbol substitution (DSS), and perceptual speed (PS) were administered at 0, 1.25, 2.25, 5.0, and 12.5 h. Sedation was assessed by the subjects and by an observer using the Stanford Sleepiness Scale and a Nurse Rating Sedation Scale (NRSS), respectively. Mean kinetic parameters after IV and oral alprazolam were as follows: volume of distribution (Vd) 0.72 and 0.84 l/kg; elimination half-life (t1/2) 11.7 and 11.8 h; clearance (Cl) 0.74 and 0.89 ml/min/kg. There were no significant differences between IV and oral alprazolam in Vd, t1/2, or area under the curve. The mean fraction absorbed after oral administration was 0.92. Performance on PS and DSS tests was impaired at 1.25 and 2.5 h, but had returned to baseline at 5.0 h for both treatments. Onset of sedation was rapid after IV administration and the average time of peak sedation was 0.48 h. Sedation scores were significantly lower during hour 1 after oral administration than after IV, but were not significantly different at later times. Alprazolam is fully available after oral administration and kinetic parameters are not affected by route of administration. With the exception of rapidity of onset, the pharmacodynamic profiles of IV and oral alprazolam are very similar after a 1.0-mg dose.
Pubmed Id: 6152055
5. Herings RM et al. Public health problems and the rapid estimation of the size of the population at risk. Torsades de pointes and the use of terfenadine and astemizole in The Netherlands. Pharmacy world & science : PWS. 1993
Authors: Herings RM Stricker BH Leufkens HG Bakker A Sturmans F Urquhart J
Abstract: Recently, the use of astemizole and terfenadine, both non-sedating H1-antihistamines, caused considerable concern. Several case reports suggested an association of both drugs with an increased risk of torsades de pointes, a special form of ventricular tachycardia. The increased risk of both H1-antihistamines was associated with exposure to supratherapeutic doses; for terfenadine the risk was also associated with concomitant exposure to the cytochrome P-450 inhibitors ketoconazole, erythromycin and cimetidine. To predict the size of the population that runs the risk of developing this potentially fatal adverse reaction in the Netherlands, the prevalence of prescribing supratherapeutic doses and the concomitant exposure to terfenadine and cytochrome P-450 inhibitors was studied. Data were obtained from the PHARMO data base in 1990, a pharmacy-based record linkage system encompassing a catchment population of 300,000 individuals. The results of the study showed that the prescribing of supratherapeutic doses and the concomitant exposure to terfenadine and cytochrome P-450 inhibitors was low. Furthermore, the results of a sensitivity analysis showed that the risk of fatal torsades de pointes has to be as high as 1 in 10,000 to cause one death in the Netherlands in one year.
Pubmed Id: 8257958
6. Ikeda S et al. Astemizole-induced torsades de pointes in a patient with vasospastic angina. Japanese circulation journal. 1998
Authors: Ikeda S Oka H Matunaga K Kubo S Asai S Miyahara Y Osaka A Kohno S
Abstract: Astemizole (Hismanal), an antihistamine agent, has been reported to be associated with ventricular arrhythmias. In this paper we present a case of QT prolongation and torsades de pointes (TdP) in a 77-year-old woman who had been taking astemizole (10 mg/day) for 6 months because of allergic skin disease. At the time of admission, the serum concentration of astemizole and its metabolites was markedly elevated at 15.85 ng/ml, approximately 3 times the normal level. The patient was also taking cimetidine, a known inhibitor of cytochrome P-450 enzymatic activity, and during her admission was diagnosed as having vasospastic angina. To the best of our knowledge, this is the first report of astemizole-induced QT prolongation and TdP in Japan.
Pubmed Id: 9583453
7. Vavricka SR et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology (Baltimore, Md.). 2002
Authors: Vavricka SR Van Montfoort J Ha HR Meier PJ Fattinger K
Abstract: The antibiotics rifamycin SV and rifampicin substantially reduce sulfobromophthalein (BSP) elimination in humans. In rats, rifamycin SV and rifampicin were shown to interfere with hepatic organic anion uptake by inhibition of the organic anion transporting polypeptides Oatp1 and Oatp2. Therefore, we investigated the effects of rifamycin SV and rifampicin on the OATPs of human liver and determined whether rifampicin is a substrate of 1 or several of these carriers. In complementary RNA (cRNA)-injected Xenopus laevis oocytes, rifamycin SV (10 micromol/L) cis-inhibited human organic anion transporting polypeptide C (SLC21A6) (OATP-C), human organic anion transporting polypeptide 8 (SLC21A8) (OATP8), human organic anion transporting polypeptide B (SLC21A9) (OATP-B), and human organic anion transporting polypeptide A (SLC21A3) (OATP-A) mediated BSP uptake by 69%, 79%, 89%, and 57%, respectively, as compared with uptake into control oocytes. In the presence of 100 micromol/L rifamycin SV, BSP uptake was almost completely abolished. Approximate K(i) values were 2 micromol/L for OATP-C, 3 micromol/L for OATP8, 3 micromol/L for OATP-B and 11 micromol/L for OATP-A. Rifampicin (10 micromol/L) inhibited OATP8-mediated BSP uptake by 50%, whereas inhibition of OATP-C-, OATP-B-, and OATP-A-mediated BSP transport was below 15%. 100 micromol/L rifampicin inhibited OATP-C- and OATP8-, OATP-B- and OATP-A-mediated BSP uptake by 66%, 96%, 25%, and 49%, respectively. The corresponding K(i) values were 17 micromol/L for OATP-C, 5 micromol/L for OATP8, and 51 micromol/L for OATP-A. Direct transport of rifampicin could be shown for OATP-C (apparent K(m) value 13 micromol/L) and OATP8 (2.3 micromol/L). In conclusion, these results show that rifamycin SV and rifampicin interact with OATP-mediated substrate transport to different extents. Inhibition of human liver OATPs can explain the previously observed effects of rifamycin SV and rifampicin on hepatic organic anion elimination.
Pubmed Id: 12085361
8. Tirona RG et al. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. The Journal of pharmacology and experimental therapeutics. 2003
Authors: Tirona RG Leake BF Wolkoff AW Kim RB
Abstract: Rifampin, a member of the rifamycin class of antibiotics, is well known for its ability to induce drug-metabolizing enzymes and transporters, through activation of the pregnane X receptor. Available data suggest rifampin entry into hepatocytes may be transporter-mediated. Accordingly, it is therefore plausible that modulation of the achievable intracellular concentration of rifampin by drug uptake transporters would influence the degree of induction. In this study, we expressed an array of known hepatic uptake transporters to show the key hepatic rifampin uptake transporters are liver-specific members of the organic anion transporting polypeptide family (OATP). Indeed, both OATP-C and OATP8 seemed capable of mediating rifampin uptake into HeLa cells. OATP-C, however, seemed to have far greater affinity and capacity for rifampin transport. In addition, several allelic variants of OATP-C known to be present among European and African Americans were found to have markedly decreased rifampin transport activity. In cell-based, transactivation assays, OATP-C expression was associated with increased cellular rifampin retention as well as potentiation of PXR reporter gene activity. This is the first demonstration of an uptake transporter such as OATP-C, in modulating PXR function, and sheds important new insight into our understanding of the molecular determinants of PXR-mediated inductive processes.
Pubmed Id: 12490595
9. Karyekar CS et al. Renal interaction between itraconazole and cimetidine. Journal of clinical pharmacology. 2004
Authors: Karyekar CS Eddington ND Briglia A Gubbins PO Dowling TC
Abstract: Renal drug interactions can result from competitive inhibition between drugs that undergo extensive renal tubular secretion by transporters such as P-glycoprotein (P-gp). The purpose of this study was to evaluate the effect of itraconazole, a known P-gp inhibitor, on the renal tubular secretion of cimetidine in healthy volunteers who received intravenous cimetidine alone and following 3 days of oral itraconazole (400 mg/day) administration. Glomerular filtration rate (GFR) was measured continuously during each study visit using iothalamate clearance. Iothalamate, cimetidine, and itraconazole concentrations in plasma and urine were determined using high-performance liquid chromatography/ultraviolet (HPLC/UV) methods. Renal tubular secretion (CL(sec)) of cimetidine was calculated as the difference between renal clearance (CL(r)) and GFR (CL(ioth)) on days 1 and 5. Cimetidine pharmacokinetic estimates were obtained for total clearance (CL(T)), volume of distribution (Vd), elimination rate constant (K(el)), area under the plasma concentration-time curve (AUC(0-240 min)), and average plasma concentration (Cp(ave)) before and after itraconazole administration. Plasma itraconazole concentrations following oral dosing ranged from 0.41 to 0.92 microg/mL. The cimetidine AUC(0-240 min) increased by 25% (p < 0.01) following itraconazole administration. The GFR and Vd remained unchanged, but significant reductions in CL(T) (655 vs. 486 mL/min, p < 0.001) and CL(sec) (410 vs. 311 mL/min, p = 0.001) were observed. The increased systemic exposure of cimetidine during coadministration with itraconazole was likely due to inhibition of P-gp-mediated renal tubular secretion. Further evaluation of renal P-gp-modulating drugs such as itraconazole that may alter the renal excretion of coadministered drugs is warranted.
Pubmed Id: 15286096
10. Park JY et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clinical pharmacology and therapeutics. 2006
Authors: Park JY Kim KA Park PW Lee OJ Kang DK Shon JH Liu KH Shin JG
Abstract: OBJECTIVE: Our objective was to evaluate the effect of the CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy volunteers. METHODS: Nineteen healthy male volunteers were divided into 3 groups on the basis of the genetic polymorphism of CYP3A5. The groups comprised subjects with CYP3A5*1/*1 (n=5), CYP3A5*1/*3 (n=7), or CYP3A5*3/*3 (n=7). After a single oral 1-mg dose of alprazolam, plasma concentrations of alprazolam were measured up to 72 hours, together with assessment of psychomotor function by use of the Digit Symbol Substitution Test, according to CYP3A5 genotype. RESULTS: The area under the plasma concentration-time curve for alprazolam was significantly greater in subjects with CYP3A5*3/*3 (830.5+/-160.4 ng . h/mL [mean+/-SD]) than in those with CYP3A5*1/*1 (599.9+/-141.0 ng . h/mL) (P=.030). The oral clearance of alprazolam was also significantly different between the CYP3A5*1/*1 group (3.5+/-0.8 L/h) and CYP3A5*3/*3 group (2.5+/-0.5 L/h) (P=.036). Although a trend was noted for the area under the Digit Symbol Substitution Test score change-time curve (area under the effect curve) to be greater in subjects with CYP3A5*3/*3 (177.2+/-84.6) than in those with CYP3A5*1/*1 (107.5+/-44), the difference did not reach statistical significance (P=.148). CONCLUSIONS: The CYP3A5*3 genotype affects the disposition of alprazolam and thus influences the plasma levels of alprazolam.
Pubmed Id: 16765147
11. Hartkoorn RC et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinburgh, Scotland). 2007
Authors: Hartkoorn RC Chandler B Owen A Ward SA Bertel Squire S Back DJ Khoo SH
Abstract: If tuberculosis therapy is to be shortened it is imperative that the sterilising activity of current and future anti-tuberculosis drugs is enhanced. Intracellular Mycobacterium tuberculosis (MTB) phagocytosed by macrophages may be a key subpopulation of bacteria that are less readily eliminated by therapy. Here we investigate whether macrophages provide MTB with a pharmacological sanctuary site, making them less susceptible to chemotherapy than extracellular bacilli. Intracellular drug activity was determined by a novel colorimetric method that measures the ability of a drug to protect A-THP1 cells from infection-mediated cell death by H37Rv. Extracellular bactericidal activity was determined by the microplate alamar blue assay (MABA). Further, the effect of P-glycoprotein (P-gp) expressed on macrophages on the intracellular kill of H37Rv was assessed. To screen the anti-tuberculosis drugs for P-gp substrate specificity, their toxicity and cellular accumulation were determined in CEM and CEM(VBL100) cells. Intracellular and extracellular anti-tuberculosis drug activity following 7-day treatment with isoniazid (mean EC(50)+/-SD: 36.7+/-2.2 and 57.2+/-2.5 ng/mL, respectively) and ethambutol (243+/-95 and 263+/-12 ng/mL, respectively) were similar. However, for rifampicin a higher concentration was required to kill intracellular (148+/-32 ng/mL) versus extracellular (1.27+/-0.02 ng/mL) bacilli. The P-gp inhibitor tariquidar, significantly increased intracellular kill of H37Rv by ethambutol and rifampicin and both of these drugs were shown to be substrates for P-gp using the P-gp overexpressing CEM(VBL100) cells. We observed a large discrepancy between intracellular and extracellular activity of rifampicin (but not with isoniazid or ethambutol). Several factors could have accounted for this including inoculum size, media and cell-mediated metabolism. These factors make the comparison of intracellular and extracellular drug activity complex. However, the intracellular assay described here has potential for studying the impact of host proteins (such as drug transporters) on the intracellular activity of drugs, and has been used successfully here to demonstrate that both rifampicin and ethambutol are substrates for P-gp.
Pubmed Id: 17258938
12. Roth M et al. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. British journal of pharmacology. 2012
Authors: Roth M Obaidat A Hagenbuch B
Abstract: The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Pubmed Id: 22013971
13. Ivanyuk A et al. Renal Drug Transporters and Drug Interactions. Clinical pharmacokinetics. 2017
Authors: Ivanyuk A Livio F Biollaz J Buclin T
Abstract: Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Pubmed Id: 28210973
14. Asaumi R et al. Comprehensive PBPK Model of Rifampicin for Quantitative Prediction of Complex Drug-Drug Interactions: CYP3A/2C9 Induction and OATP Inhibition Effects. CPT: pharmacometrics & systems pharmacology. 2018
Authors: Asaumi R Toshimoto K Tobe Y Hashizume K Nunoya KI Imawaka H Lee W Sugiyama Y
Abstract: This study aimed to construct a physiologically based pharmacokinetic (PBPK) model of rifampicin that can accurately and quantitatively predict complex drug-drug interactions (DDIs) involving its saturable hepatic uptake and auto-induction. Using in silico and in vitro parameters, and reported clinical pharmacokinetic data, rifampicin PBPK model was built and relevant parameters for saturable hepatic uptake and UDP-glucuronosyltransferase (UGT) auto-induction were optimized by fitting. The parameters for cytochrome P450 (CYP) 3A and CYP2C9 induction by rifampicin were similarly optimized using clinical DDI data with midazolam and tolbutamide as probe substrates, respectively. For validation, our current PBPK model was applied to simulate complex DDIs with glibenclamide (a substrate of CYP3A/2C9 and hepatic organic anion transporting polypeptides (OATPs)). Simulated results were in quite good accordance with the observed data. Altogether, our constructed PBPK model of rifampicin demonstrates the robustness and utility in quantitatively predicting CYP3A/2C9 induction-mediated and/or OATP inhibition-mediated DDIs with victim drugs.
Pubmed Id: 29368402
15. Kiesel EK et al. An anticholinergic burden score for German prescribers: score development. BMC geriatrics. 2018
Authors: Kiesel EK Hopf YM Drey M
Abstract: BACKGROUND: Anticholinergic drugs put elderly patients at a higher risk for falls, cognitive decline, and delirium as well as peripheral adverse reactions like dry mouth or constipation. Prescribers are often unaware of the drug-based anticholinergic burden (ACB) of their patients. This study aimed to develop an anticholinergic burden score for drugs licensed in Germany to be used by clinicians at prescribing level. METHODS: A systematic literature search in pubmed assessed previously published ACB tools. Quantitative grading scores were extracted, reduced to drugs available in Germany, and reevaluated by expert discussion. Drugs were scored as having no, weak, moderate, or strong anticholinergic effects. Further drugs were identified in clinical routine and included as well. RESULTS: The literature search identified 692 different drugs, with 548 drugs available in Germany. After exclusion of drugs due to no systemic effect or scoring of drug combinations (n = 67) and evaluation of 26 additional identified drugs in clinical routine, 504 drugs were scored. Of those, 356 drugs were categorised as having no, 104 drugs were scored as weak, 18 as moderate and 29 as having strong anticholinergic effects. CONCLUSIONS: The newly created ACB score for drugs authorized in Germany can be used in daily clinical practice to reduce potentially inappropriate medications for elderly patients. Further clinical studies investigating its effect on reducing anticholinergic side effects are necessary for validation.
Pubmed Id: 30305048
16. Abulfathi AA et al. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clinical pharmacokinetics. 2019
Authors: Abulfathi AA Decloedt EH Svensson EM Diacon AH Donald P Reuter H
Abstract: The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the treatment duration for patients with pulmonary TB to 6 months when combined with pyrazinamide in the first 2 months. Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600 mg (8-12 mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of ≥ 95% and relapse rates of < 5%. However, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when dosed at 600 mg. Rifampicin maximum (peak) concentration (C) > 8.2 μg/mL is an independent predictor of sterilizing activity and therapeutic drug monitoring at 2, 4, and 6 h post-dose may aid in optimizing dosing to achieve the recommended rifampicin concentration of ≥ 8 µg/mL. A higher rifampicin Cis required for severe forms TB such as TB meningitis, with C≥ 22 μg/mL and area under the concentration-time curve (AUC) from time zero to 6 h (AUC) ≥ 70 μg·h/mL associated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is encouraging that daily rifampicin doses up to 35 mg/kg were found to be safe and well-tolerated over a period of 12 weeks. High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The studies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such as C/MIC (minimum inhibitory concentration) and AUC/MIC.
Pubmed Id: 31049868

epha.ch AG

Stadelhoferstrasse 40 8001 Zurich Switzerland
Github LinkedIn Facebook Twitter
kontakt@epha.ch

General

Imprint Data protection Terms of Use About us API

Languages

Deutsch English Français Italiano Español
Copyright © 2020 epha.ch - All rights reserved