epha.health
Feedback
Nouveau Cas
S'inscrire
busy
3
Médicaments
|
0
Résultats
|
Procéder

Conseils pharmacologiques pour la aliskiren, itraconazole et rifampicine

plan
Impression
Version 6.0.32 (Beta Preview)

Résumé Résumé info 83%

Pharmacocinétique -12%
Aliskiren
Itraconazole
Rifampicine
Les scores 0%
Extension de temps QT
Effets anticholinergiques
Effets sérotoninergiques
Effets indésirables des médicaments -5%
Mal de crâne
Phosphatase alcaline élevée
GGT élevé

Variantes ✨

Pour l'évaluation intensive en calcul des variantes, veuillez choisir l'abonnement standard payant.

médicament Zone d'application

Explications pour les patients

undefined Pharmacocinétique info -12%

∑ Expositionaaliitrrif
Aliskiren 0.52 4.07 0.36
Itraconazole 0.46 1 0.46
Rifampicine n.a.n.a.n.a.
Symbole (a): changement multiplié par X de l'AUC
Légende (n.a.): Information non disponible

Les changements d'exposition mentionnés sont liés aux changements de la courbe concentration plasmatique en fonction du temps [ASC]. L'exposition à la aliskiren est réduite à 52%, lorsqu'il est associé à la itraconazole (407%) et à la rifampicine (36%). Cela peut être associé à une efficacité réduite. L'exposition à la itraconazole est réduite à 46%, lorsqu'il est associé à la aliskiren (100%) et à la rifampicine (46%). Cela peut être associé à une efficacité réduite. Nous n'avons détecté aucune modification de l'exposition à la rifampicine. Nous ne pouvons actuellement pas estimer l'influence de la aliskiren et de la itraconazole.

Évaluation: Les paramètres pharmacocinétiques de la population moyenne sont utilisés comme point de départ pour calculer les changements individuels d'exposition dus aux interactions.
La aliskiren a une faible biodisponibilité orale [ F ] de 3%, c'est pourquoi la concentration plasmatique maximale [Cmax] a tendance à changer de manière significative avec une interaction. La demi-vie terminale [ t12 ] est assez longue à 26 heures et des taux plasmatiques constants [ Css ] ne sont atteints qu’après plus de 104 heures. La liaison aux protéines [ Pb ] est plutôt faible à 49% et le volume de distribution [ Vd ] est très important à 133 litres. Étant donné que la substance a un faible taux d'extraction hépatique de 0,9, le déplacement de la liaison aux protéines [Pb] dans le contexte d'une interaction peut augmenter l'exposition. Environ 23.0% d'une dose administrée est excrétée inchangée par les reins et cette proportion est rarement modifiée par les interactions. Le métabolisme s'effectue principalement via le CYP3A4 et le transport actif s'effectue en partie via OATP1A2, OATP2B1 et PGP.
La itraconazole a une biodisponibilité orale moyenne [ F ] de 55%, raison pour laquelle les concentrations plasmatiques maximales [Cmax] ont tendance à changer avec une interaction. La demi-vie terminale [ t12 ] est de 21 heures et les taux plasmatiques constants [ Css ] sont atteints après environ 9 999 heures. La liaison aux protéines [ Pb ] est très forte à 99.8% et le volume de distribution [ Vd ] est très important à 796 litres, c'est pourquoi, à un taux d'extraction hépatique moyen de 0,9, le débit sanguin hépatique [Q] et une modification de la liaison aux protéines [Pb] sont pertinents. Le métabolisme s'effectue principalement via le CYP3A4 et le transport actif se fait notamment via PGP.
La rifampicine a une biodisponibilité orale élevée [ F ] de 90%, raison pour laquelle les concentrations plasmatiques maximales [Cmax] ont tendance à peu changer pendant une interaction. La demi-vie terminale [ t12 ] est assez courte à 3.5 heures et des taux plasmatiques constants [ Css ] sont atteints rapidement. La liaison aux protéines [ Pb ] est modérément forte à 75% et le volume de distribution [ Vd ] est très important à 101 litres. Le métabolisme ne se fait pas via les cytochromes communs et le transport actif s'effectue en partie via OATP1B1, OATP1B3 et PGP.

émetteur Effets sérotoninergiques info -0%

Les scores ∑ Points aliitrrif
Effets sérotoninergiques a 0 Ø Ø Ø
Symbole (a): Augmentation du risque de 5 points.

Évaluation: Selon nos connaissances, ni la aliskiren, itraconazole ni la rifampicine n'augmentent l'activité sérotoninergique.

émetteur Effets anticholinergiques info -0%

Les scores ∑ Points aliitrrif
Kiesel b 0ØØØ
Symbole (b): Risque accru de 3 points.

Évaluation: Selon nos résultats, ni la aliskiren, itraconazole ni la rifampicine n'augmentent l'activité anticholinergique.

électrocardiogramme Extension de temps QT info -0%

Les scores ∑ Points aliitrrif
RISK-PATH c 0.25Ø+Ø
Symbole (c): Augmentation du risque de 10 points.

Recommandation: Veuillez vous assurer que les facteurs de risque influençables sont minimisés. Les perturbations électrolytiques telles que de faibles niveaux de calcium, de potassium et de magnésium doivent être compensées. La dose efficace la plus faible de itraconazole doit être utilisée.

Évaluation: La itraconazole peut potentiellement prolonger le temps QT et s'il existe des facteurs de risque, les arythmies de type torsades de pointes peuvent être favorisées. Nous ne connaissons aucun potentiel d'allongement de l'intervalle QT pour la aliskiren et la rifampicine.

Autres effets secondaires Effets secondaires généraux info -5%

Effets secondaires ∑ la fréquence aliitrrif
Mal de crâne10.1 %4.3↓6.1↓n.a.
Phosphatase alcaline élevée10.0 %n.a.n.a.10.0
GGT élevé10.0 %n.a.n.a.10.0
Transaminases élevées10.0 %n.a.n.a.10.0
Rhinopharyngite9.0 %n.a.9.0↓n.a.
Infection respiratoire supérieure8.0 %n.a.8.0↓n.a.
La nausée7.9 %n.a.7.0↓+
La diarrhée6.0 %2.3↓2.9↓+
Démangeaison de la peau6.0 %n.a.6.0↓n.a.
Vomissements5.0 %n.a.5.0↓n.a.
Extrait tabulaire des effets secondaires les plus courants
Signe (+): effet secondaire décrit, mais fréquence indéterminée
Signe (↑/↓): fréquence plutôt supérieure / inférieure en raison de l'exposition

Respiratoire
Sinusite (4.5%): itraconazole
Œdème pulmonaire: itraconazole

Cardiaque
Œdème périphérique (4%): itraconazole
Hypertension (3%): itraconazole
Hypotension: aliskiren
Insuffisance cardiaque: itraconazole

Dermatologique
Prurit (4%): itraconazole
Syndrome de Stevens-Johnson: aliskiren
Nécrolyse épidermique toxique: aliskiren

Neurologique
Vertiges (3.6%): aliskiren, itraconazole
Somnolence: rifampicine
Crise d'épilepsie: aliskiren

Systémique
Fièvre (3.5%): rifampicine, itraconazole
Fatigue (2.3%): itraconazole

Gastro-intestinal
Douleur abdominale (2.9%): itraconazole
Perte d'appétit: rifampicine
Pancréatite: rifampicine, itraconazole

Les électrolytes
Hyperkaliémie: aliskiren, itraconazole
Hypokaliémie: itraconazole

Rénal
Augmentation de la créatinine sérique: aliskiren
Insuffisance rénale: aliskiren

Immunologique
Urticaire: rifampicine
Réactions cutanées allergiques: aliskiren
Angioedème: aliskiren
Réaction anaphylactique: rifampicine
Réaction d'hypersensibilité: itraconazole

Métabolique
Hyperuricémie: aliskiren

Hématologique
Purpura thrombotique thrombotique: rifampicine

Hépatique
Hépatomégalie: rifampicine
Jaunisse: rifampicine
Insuffisance hépatique: rifampicine
Hépatotoxicité: itraconazole

Ophtalmologique
Névrite optique: rifampicine

Auriculaire
Perte auditive: itraconazole

Limites Limites

Sur la base de vos et de vos informations scientifiques, nous évaluons le risque individuel d'effets secondaires indésirables. Les barres orange indiquent le potentiel de base des médicaments à provoquer cet effet secondaire. Ces recommandations visent à conseiller les professionnels et ne se substituent pas à une consultation avec un médecin. Dans la version d'essai restreinte (alpha), le risque de toutes les substances n'a pas encore été évalué de manière concluante.

littérature Références bibliographiques

1. Loos U et al. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klinische Wochenschrift. 1985
Authors: Loos U Musch E Jensen JC Mikus G Schwabe HK Eichelbaum M
Abstract: We investigated the pharmacokinetics of rifampicin and its major metabolites, 25-desacetylrifampicin and 3-formylrifampicin, in two groups of six patients with active pulmonary tuberculosis, who received either multiple oral or intravenous rifampicin therapy in combination with intravenous isoniazid and ethambutol. Serum concentrations of rifampicin were each determined after a single oral and intravenous test dose of 600 mg rifampicin at the beginning and after 1 and 3 weeks of tuberculostatic treatment. Analysis of rifampicin and its metabolites was performed by high-pressure liquid chromatography. It was found that, due to autoinduction of its metabolizing hepatic enzymes, the systemic clearance of rifampicin increased from 5.69 to 9.03 l/h after 3 weeks of multiple dosing. The volume of distribution of the drug was constant over the period of this study. The bioavailability of the active, orally administered rifampicin decreased from 93% after the first single oral dose to 68% after 3 weeks of oral and intravenous rifampicin therapy. Relating to the increase in systemic (hepatic) clearance, a bioavailability no lower than 90% can be predicted. The reduction to 68% indicates that, in addition to an increase of hepatic metabolism, an induction of a prehepatic "first-pass" effect resulted from multiple rifampicin doses. Our study of rifampicin metabolites confirm that prehepatic metabolism was induced, since a higher metabolic ratio resulted after the oral doses than after the intravenous rifampicin test doses. A preabsorptive process can therefore be excluded as a cause of reduced bioavailability.
Pubmed Id: 4087830
2. Pohjola-Sintonen S et al. Torsades de pointes after terfenadine-itraconazole interaction. BMJ (Clinical research ed.). 1993
Authors: Pohjola-Sintonen S Viitasalo M Toivonene L Neuvonen P
Abstract: No Abstract available
Pubmed Id: 8382980
3. Vavricka SR et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology (Baltimore, Md.). 2002
Authors: Vavricka SR Van Montfoort J Ha HR Meier PJ Fattinger K
Abstract: The antibiotics rifamycin SV and rifampicin substantially reduce sulfobromophthalein (BSP) elimination in humans. In rats, rifamycin SV and rifampicin were shown to interfere with hepatic organic anion uptake by inhibition of the organic anion transporting polypeptides Oatp1 and Oatp2. Therefore, we investigated the effects of rifamycin SV and rifampicin on the OATPs of human liver and determined whether rifampicin is a substrate of 1 or several of these carriers. In complementary RNA (cRNA)-injected Xenopus laevis oocytes, rifamycin SV (10 micromol/L) cis-inhibited human organic anion transporting polypeptide C (SLC21A6) (OATP-C), human organic anion transporting polypeptide 8 (SLC21A8) (OATP8), human organic anion transporting polypeptide B (SLC21A9) (OATP-B), and human organic anion transporting polypeptide A (SLC21A3) (OATP-A) mediated BSP uptake by 69%, 79%, 89%, and 57%, respectively, as compared with uptake into control oocytes. In the presence of 100 micromol/L rifamycin SV, BSP uptake was almost completely abolished. Approximate K(i) values were 2 micromol/L for OATP-C, 3 micromol/L for OATP8, 3 micromol/L for OATP-B and 11 micromol/L for OATP-A. Rifampicin (10 micromol/L) inhibited OATP8-mediated BSP uptake by 50%, whereas inhibition of OATP-C-, OATP-B-, and OATP-A-mediated BSP transport was below 15%. 100 micromol/L rifampicin inhibited OATP-C- and OATP8-, OATP-B- and OATP-A-mediated BSP uptake by 66%, 96%, 25%, and 49%, respectively. The corresponding K(i) values were 17 micromol/L for OATP-C, 5 micromol/L for OATP8, and 51 micromol/L for OATP-A. Direct transport of rifampicin could be shown for OATP-C (apparent K(m) value 13 micromol/L) and OATP8 (2.3 micromol/L). In conclusion, these results show that rifamycin SV and rifampicin interact with OATP-mediated substrate transport to different extents. Inhibition of human liver OATPs can explain the previously observed effects of rifamycin SV and rifampicin on hepatic organic anion elimination.
Pubmed Id: 12085361
4. Tirona RG et al. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. The Journal of pharmacology and experimental therapeutics. 2003
Authors: Tirona RG Leake BF Wolkoff AW Kim RB
Abstract: Rifampin, a member of the rifamycin class of antibiotics, is well known for its ability to induce drug-metabolizing enzymes and transporters, through activation of the pregnane X receptor. Available data suggest rifampin entry into hepatocytes may be transporter-mediated. Accordingly, it is therefore plausible that modulation of the achievable intracellular concentration of rifampin by drug uptake transporters would influence the degree of induction. In this study, we expressed an array of known hepatic uptake transporters to show the key hepatic rifampin uptake transporters are liver-specific members of the organic anion transporting polypeptide family (OATP). Indeed, both OATP-C and OATP8 seemed capable of mediating rifampin uptake into HeLa cells. OATP-C, however, seemed to have far greater affinity and capacity for rifampin transport. In addition, several allelic variants of OATP-C known to be present among European and African Americans were found to have markedly decreased rifampin transport activity. In cell-based, transactivation assays, OATP-C expression was associated with increased cellular rifampin retention as well as potentiation of PXR reporter gene activity. This is the first demonstration of an uptake transporter such as OATP-C, in modulating PXR function, and sheds important new insight into our understanding of the molecular determinants of PXR-mediated inductive processes.
Pubmed Id: 12490595
5. Isoherranen N et al. Role of itraconazole metabolites in CYP3A4 inhibition. Drug metabolism and disposition: the biological fate of chemicals. 2004
Authors: Isoherranen N Kunze KL Allen KE Nelson WL Thummel KE
Abstract: Itraconazole (ITZ) is a potent inhibitor of CYP3A in vivo. However, unbound plasma concentrations of ITZ are much lower than its reported in vitro Ki, and no clinically significant interactions would be expected based on a reversible mechanism of inhibition. The purpose of this study was to evaluate the reasons for the in vitro-in vivo discrepancy. The metabolism of ITZ by CYP3A4 was studied. Three metabolites were detected: hydroxy-itraconazole (OH-ITZ), a known in vivo metabolite of ITZ, and two new metabolites: keto-itraconazole (keto-ITZ) and N-desalkyl-itraconazole (ND-ITZ). OHITZ and keto-ITZ were also substrates of CYP3A4. Using a substrate depletion kinetic approach for parameter determination, ITZ exhibited an unbound K(m) of 3.9 nM and an intrinsic clearance (CLint) of 69.3 ml.min(-1).nmol CYP3A4(-1). The respective unbound Km values for OH-ITZ and keto-ITZ were 27 nM and 1.4 nM and the CLint values were 19.8 and 62.5 ml.min(-1).nmol CYP3A4(-1). Inhibition of CYP3A4 by ITZ, OH-ITZ, keto-ITZ, and ND-ITZ was evaluated using hydroxylation of midazolam as a probe reaction. Both ITZ and OH-ITZ were competitive inhibitors of CYP3A4, with unbound Ki (1.3 nM for ITZ and 14.4 nM for OH-ITZ) close to their respective Km. ITZ, OH-ITZ, keto-ITZ and ND-ITZ exhibited unbound IC50 values of 6.1 nM, 4.6 nM, 7.0 nM, and 0.4 nM, respectively, when coincubated with human liver microsomes and midazolam (substrate concentration < Km). These findings demonstrate that ITZ metabolites are as potent as or more potent CYP3A4 inhibitors than ITZ itself, and thus may contribute to the inhibition of CYP3A4 observed in vivo after ITZ dosing.
Pubmed Id: 15242978
6. Hartkoorn RC et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinburgh, Scotland). 2007
Authors: Hartkoorn RC Chandler B Owen A Ward SA Bertel Squire S Back DJ Khoo SH
Abstract: If tuberculosis therapy is to be shortened it is imperative that the sterilising activity of current and future anti-tuberculosis drugs is enhanced. Intracellular Mycobacterium tuberculosis (MTB) phagocytosed by macrophages may be a key subpopulation of bacteria that are less readily eliminated by therapy. Here we investigate whether macrophages provide MTB with a pharmacological sanctuary site, making them less susceptible to chemotherapy than extracellular bacilli. Intracellular drug activity was determined by a novel colorimetric method that measures the ability of a drug to protect A-THP1 cells from infection-mediated cell death by H37Rv. Extracellular bactericidal activity was determined by the microplate alamar blue assay (MABA). Further, the effect of P-glycoprotein (P-gp) expressed on macrophages on the intracellular kill of H37Rv was assessed. To screen the anti-tuberculosis drugs for P-gp substrate specificity, their toxicity and cellular accumulation were determined in CEM and CEM(VBL100) cells. Intracellular and extracellular anti-tuberculosis drug activity following 7-day treatment with isoniazid (mean EC(50)+/-SD: 36.7+/-2.2 and 57.2+/-2.5 ng/mL, respectively) and ethambutol (243+/-95 and 263+/-12 ng/mL, respectively) were similar. However, for rifampicin a higher concentration was required to kill intracellular (148+/-32 ng/mL) versus extracellular (1.27+/-0.02 ng/mL) bacilli. The P-gp inhibitor tariquidar, significantly increased intracellular kill of H37Rv by ethambutol and rifampicin and both of these drugs were shown to be substrates for P-gp using the P-gp overexpressing CEM(VBL100) cells. We observed a large discrepancy between intracellular and extracellular activity of rifampicin (but not with isoniazid or ethambutol). Several factors could have accounted for this including inoculum size, media and cell-mediated metabolism. These factors make the comparison of intracellular and extracellular drug activity complex. However, the intracellular assay described here has potential for studying the impact of host proteins (such as drug transporters) on the intracellular activity of drugs, and has been used successfully here to demonstrate that both rifampicin and ethambutol are substrates for P-gp.
Pubmed Id: 17258938
7. Templeton IE et al. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clinical pharmacology and therapeutics. 2008
Authors: Templeton IE Thummel KE Kharasch ED Kunze KL Hoffer C Nelson WL Isoherranen N
Abstract: Itraconazole (ITZ) is metabolized in vitro to three inhibitory metabolites: hydroxy-itraconazole (OH-ITZ), keto-itraconazole (keto-ITZ), and N-desalkyl-itraconazole (ND-ITZ). The goal of this study was to determine the contribution of these metabolites to drug-drug interactions caused by ITZ. Six healthy volunteers received 100 mg ITZ orally for 7 days, and pharmacokinetic analysis was conducted at days 1 and 7 of the study. The extent of CYP3A4 inhibition by ITZ and its metabolites was predicted using this data. ITZ, OH-ITZ, keto-ITZ, and ND-ITZ were detected in plasma samples of all volunteers. A 3.9-fold decrease in the hepatic intrinsic clearance of a CYP3A4 substrate was predicted using the average unbound steady-state concentrations (C(ss,ave,u)) and liver microsomal inhibition constants for ITZ, OH-ITZ, keto-ITZ, and ND-ITZ. Accounting for circulating metabolites of ITZ significantly improved the in vitro to in vivo extrapolation of CYP3A4 inhibition compared to a consideration of ITZ exposure alone.
Pubmed Id: 17495874
8. Vaidyanathan S et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren alone and in combination with irbesartan in renal impairment. Clinical pharmacokinetics. 2007
Authors: Vaidyanathan S Bigler H Yeh C Bizot MN Dieterich HA Howard D Dole WP
Abstract: BACKGROUND: Aliskiren is an orally active direct renin inhibitor approved for the treatment of hypertension. This study assessed the effects of renal impairment on the pharmacokinetics and safety of aliskiren alone and in combination with the angiotensin receptor antagonist irbesartan. METHODS: This open-label study enrolled 17 males with mild, moderate or severe renal impairment (creatinine clearance [CL(CR)] 50-80, 30-49 and <30 mL/minute, respectively) and 17 healthy males matched for age and bodyweight. Subjects received oral aliskiren 300 mg once daily on days 1-7 and aliskiren coadministered with irbesartan 300 mg on days 8-14. Plasma aliskiren concentrations were determined by high-performance liquid chromatography/tandem mass spectrometry at frequent intervals up to 24 hours after dosing on days 1, 7 and 14. RESULTS: Renal clearance of aliskiren averaged 1280 +/- 500 mL/hour (mean +/- SD) in healthy subjects and 559 +/- 220, 312 +/- 75 and 243 +/- 186 mL/hour in patients with mild, moderate and severe renal impairment, respectively. At steady state (day 7), the geometric mean ratios (renal impairment : matched healthy volunteers) ranged from 1.21 to 2.05 for the area under the plasma concentration-time curve (AUC) over the dosage interval tau (24h) [AUC(tau)]) and from 0.83 to 2.25 for the maximum observed plasma concentration of aliskiren at steady state. Changes in exposure did not correlate with CL(CR), consistent with an effect of renal impairment on non-renal drug disposition. The observed large intersubject variability in aliskiren pharmacokinetic parameters was unrelated to the degree of renal impairment. Accumulation of aliskiren at steady state (indicated by the AUC from 0 and 24 hours [AUC(24)] on day 7 vs day 1) was similar in healthy subjects (1.79 [95% CI 1.24, 2.60]) and those with renal impairment (range 1.39-1.99). Coadministration with irbesartan did not alter the pharmacokinetics of aliskiren. Aliskiren was well tolerated when administered alone or with irbesartan. CONCLUSIONS: Exposure to aliskiren is increased by renal impairment but does not correlate with the severity of renal impairment (CL(CR)). This is consistent with previous data indicating that renal clearance of aliskiren represents only a small fraction of total clearance. Initial dose adjustment of aliskiren is unlikely to be required in patients with renal impairment.
Pubmed Id: 17655373
9. Kato M et al. The quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modeling. Pharmaceutical research. 2008
Authors: Kato M Shitara Y Sato H Yoshisue K Hirano M Ikeda T Sugiyama Y
Abstract: PURPOSE: The objective is to confirm if the prediction of the drug-drug interaction using a physiologically based pharmacokinetic (PBPK) model is more accurate. In vivo Ki values were estimated using PBPK model to confirm whether in vitro Ki values are suitable. METHOD: The plasma concentration-time profiles for the substrate with coadministration of an inhibitor were collected from the literature and were fitted to the PBPK model to estimate the in vivo Ki values. The AUC ratios predicted by the PBPK model using in vivo Ki values were compared with those by the conventional method assuming constant inhibitor concentration. RESULTS: The in vivo Ki values of 11 inhibitors were estimated. When the in vivo Ki values became relatively lower, the in vitro Ki values were overestimated. This discrepancy between in vitro and in vivo Ki values became larger with an increase in lipophilicity. The prediction from the PBPK model involving the time profile of the inhibitor concentration was more accurate than the prediction by the conventional methods. CONCLUSION: A discrepancy between the in vivo and in vitro Ki values was observed. The prediction using in vivo Ki values and the PBPK model was more accurate than the conventional methods.
Pubmed Id: 18483837
10. Vaidyanathan S et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. Journal of clinical pharmacology. 2008
Authors: Vaidyanathan S Camenisch G Schuetz H Reynolds C Yeh CM Bizot MN Dieterich HA Howard D Dole WP
Abstract: This study investigated the potential pharmacokinetic interaction between the direct renin inhibitor aliskiren and modulators of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Aliskiren stimulated in vitro P-glycoprotein ATPase activity in recombinant baculovirus-infected Sf9 cells with high affinity (K(m) 2.1 micromol/L) and was transported by organic anion-transporting peptide OATP2B1-expressing HEK293 cells with moderate affinity (K(m) 72 micromol/L). Three open-label, multiple-dose studies in healthy subjects investigated the pharmacokinetic interactions between aliskiren 300 mg and digoxin 0.25 mg (n = 22), atorvastatin 80 mg (n = 21), or ketoconazole 200 mg bid (n = 21). Coadministration with aliskiren resulted in changes of <30% in AUC(tau) and C(max,ss) of digoxin, atorvastatin, o-hydroxy-atorvastatin, and rho-hydroxy-atorvastatin, indicating no clinically significant interaction with P-glycoprotein or CYP3A4 substrates. Aliskiren AUC(tau) was significantly increased by coadministration with atorvastatin (by 47%, P < .001) or ketoconazole (by 76%, P < .001) through mechanisms most likely involving transporters such as P-glycoprotein and organic anion-transporting peptide and possibly through metabolic pathways such as CYP3A4 in the gut wall. These results indicate that aliskiren is a substrate for but not an inhibitor of P-glycoprotein. On the basis of the small changes in exposure to digoxin and atorvastatin and the <2-fold increase in exposure to aliskiren during coadministration with atorvastatin and ketoconazole, the authors conclude that the potential for clinically relevant drug interactions between aliskiren and these substrates and/or inhibitors of P-glycoprotein/CPY3A4/OATP is low.
Pubmed Id: 18784280
11. Ito S et al. Efficacy and safety of aliskiren in Japanese hypertensive patients with renal dysfunction. Hypertension research : official journal of the Japanese Society of Hypertension. 2010
Authors: Ito S Nakura N Le Breton S Keefe D
Abstract: This 12-week, multicenter, open-label study assessed the efficacy, pharmacokinetics and safety of a once-daily aliskiren in Japanese hypertensive patients with renal dysfunction. Patients (n=40, aged 20-80 years) with mean sitting diastolic blood pressure (msDBP) >or=95 and <110 mm Hg and serum creatinine between >or=1.3 and <3.0 mg per 100 ml in males or between >or=1.2 and <3.0 mg per 100 ml in females were eligible. Patients began therapy with a once-daily morning oral dose of 75 mg of aliskiren. In patients with inadequate blood pressure control (msDBP >or=90 or mean sitting systolic blood pressure [msSBP] >or=140 mm Hg) and without safety concerns (serum potassium >5.5 mEq l(-1) or an increase in serum creatinine >or=20%), the aliskiren dose was increased to 150 mg and then to 300 mg in sequential steps starting from Week 2. Efficacy was assessed as change in msSBP/msDBP from baseline to the Week 8 endpoint (with the last observation carried forward). The mean reduction from baseline to Week 8 endpoint was 13.9+/-16.6 and 11.6+/-9.7 mm Hg for msSBP and msDBP, respectively. At the Week 8 endpoint, 65% patients had achieved blood pressure response (msDBP <90 or a 10 mm Hg decrease or msSBP <140 or a 20 mm Hg decrease) and 30% had achieved blood pressure control (msSBP <140 mm Hg and msDBP <90 mm Hg). Aliskiren was well tolerated with no new safety concerns in Japanese hypertensive patients with renal dysfunction.
Pubmed Id: 19927154
12. Tapaninen T et al. Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. Journal of clinical pharmacology. 2011
Authors: Tapaninen T Backman JT Kurkinen KJ Neuvonen PJ Niemi M
Abstract: In a randomized crossover study, 11 healthy volunteers took 100 mg (first dose 200 mg) of the antifungal drug itraconazole, a P-glycoprotein and CYP3A4 inhibitor, or placebo twice daily for 5 days. On day 3, they ingested a single 150-mg dose of aliskiren, a renin inhibitor used in the treatment of hypertension. Itraconazole raised the peak plasma aliskiren concentration 5.8-fold (range, 1.1- to 24.3-fold; P < .001) and the area under the plasma aliskiren concentration-time curve 6.5-fold (range, 2.6- to 20.5-fold; P < .001) but had no significant effect on aliskiren elimination half-life. Itraconazole increased the amount of aliskiren excreted into the urine during 12 hours 8.0-fold (P < .001) and its renal clearance 1.2-fold (P = .042). Plasma renin activity 24 hours after aliskiren intake was 68% lower during the itraconazole phase than during the placebo phase (P = .011). In conclusion, itraconazole markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. The interaction is probably mainly explained by inhibition of the P-glycoprotein-mediated efflux of aliskiren in the small intestine, with a minor contribution from inhibition of CYP3A4. Concomitant use of aliskiren and itraconazole is best avoided.
Pubmed Id: 20400651
13. Rebello S et al. Effect of verapamil on the pharmacokinetics of aliskiren in healthy participants. Journal of clinical pharmacology. 2011
Authors: Rebello S Leon S Hariry S Dahlke M Jarugula V
Abstract: The authors describe the drug-drug interaction between aliskiren and verapamil in healthy participants. Eighteen participants first received an oral dose of aliskiren 300 mg (highest recommended clinical dose) in period 1. After a 10-day washout period, the participants received verapamil 240 mg/d for 8 days (period 2). On day 8, the participants also received an oral dose of aliskiren 300 mg. Safety and pharmacokinetic analyses were performed during each treatment period. Concomitant administration of a single dose of aliskiren during steady-state verapamil resulted in an increase in plasma concentration of aliskiren. The mean increase in AUC(0-∞), AUC(last), and C(max) was about 2-fold. On day 8, in the presence of aliskiren, AUC(τ,ss) of R-norverapamil, R-verapamil, S-norverapamil, and S-verapamil was decreased by 10%, 16%, 10%, and 25%, respectively. Similarly, the C(max,ss) of R-norverapamil, R-verapamil, S-norverapamil, and S-verapamil was decreased by 13%, 18%, 12%, and 24%, respectively. Aliskiren did not affect the AUC(τ,ss) ratios of R-norverapamil/R-verapamil and S-norverapamil/S-verapamil. Aliskiren administered alone or in combination with verapamil was well tolerated in healthy participants. In conclusion, no dose adjustment is necessary when aliskiren is administered with moderate ABCB1 inhibitors such as verapamil (240 mg/d).
Pubmed Id: 20413453
14. Rebello S et al. Effect of cyclosporine on the pharmacokinetics of aliskiren in healthy subjects. Journal of clinical pharmacology. 2011
Authors: Rebello S Compain S Feng A Hariry S Dieterich HA Jarugula V
Abstract: To explore the clinical relevance of inhibition of multidrug resistance transporter 1 and organic anion transporting polypeptide transporter, a drug-drug interaction study was conducted using aliskiren and cyclosporine. This was an open-label, single-sequence, parallel-group, single-dose study in healthy subjects. Subjects (n = 14) first received aliskiren 75 mg orally (period 1), followed by aliskiren 75 mg + cyclosporine 200 mg (period 2) after a 7-day washout period, and aliskiren 75 mg + cyclosporine 600 mg (period 3) after a 14-day washout period. Safety and pharmacokinetics were analyzed during each period. The primary objective was to characterize pharmacokinetics of aliskiren (single-dose and combination with cyclosporine). The increases in area under the time-concentration curve from time 0 to infinity and maximum concentration associated with cyclosporine 200 mg or 600 mg were 4- to 5-fold and 2.5-fold, respectively. Mean half-life increased from 25 to 45 hours. Based on comparison to literature, a single-dose of aliskiren 75 mg did not alter the pharmacokinetics of cyclosporine. Aliskiren 75 mg was well tolerated. Combination with cyclosporine increased the number of adverse events, mainly hot flush and gastrointestinal symptoms, with no serious adverse events. Two adverse events led to withdrawal (ligament rupture, not suspected to be study-drug related; and vomiting, suspected to be study-drug related). Laboratory parameters, vital signs, and electrocardiographs showed no time- or treatment-related changes. As cyclosporine significantly altered the pharmacokinetics of aliskiren in humans, its use with aliskiren is not recommended.
Pubmed Id: 21406600
15. Roth M et al. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. British journal of pharmacology. 2012
Authors: Roth M Obaidat A Hagenbuch B
Abstract: The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Pubmed Id: 22013971
16. Khadzhynov D et al. Pharmacokinetics of aliskiren in patients with end-stage renal disease undergoing haemodialysis. Clinical pharmacokinetics. 2012
Authors: Khadzhynov D Slowinski T Lieker I Neumayer HH Albrecht D Streefkerk HJ Rebello S Peters H
Abstract: BACKGROUND AND OBJECTIVES: Aliskiren represents a novel class of orally active renin inhibitors. This study analyses the pharmacokinetics, tolerability and safety of single-dose aliskiren inpatients with end-stage renal disease (ESRD) undergoing haemodialysis. METHODS: Six ESRD patients and six matched healthy volunteers were enrolled in an open-label, parallel-group, single-sequence study. The ESRD patients underwent two treatment periods where 300 mg of aliskiren was administered 48 or 1 h before a standardized haemodialysis session (4 h, 1.4 m(2) high-flux filter, blood flow 300 mL/min, dialysate flow 500 mL/min). Washout was >10 days between both periods. Blood and dialysis samples were taken for up to 96 h postdose to determine aliskiren concentrations. RESULTS: Compared with the healthy subjects (1681 ± 1034 ng·h/mL), the area under the plasma concentration-time curve (AUC) from time zero to infinity was 61% (haemodialysis at 48 h) and 41% (haemodialysis at 1 h) higher in ESRD patients receiving single-dose aliskiren 300 mg. The maximum (peak) plasma drug concentration (481 ± 497 ng/mL in healthy subjects) was 17% higher (haemodialysis at 48 h) and 16% lower (haemodialysis at 1 h). In both treatment periods, dialysis clearance was below 2% of oral clearance and the mean fraction eliminated from circulation was 10 and 12% in period 1 and 2, respectively. Drug AUCs were similar in ESRD patients receiving aliskiren 1 or 48 h before dialysis. No severe adverse events occurred. CONCLUSION: The exposure of aliskiren is moderately higher in ESRD patients. Only a minor portion is removed by a typical haemodialysis session. Aliskiren exposure is not significantly affected by intermittent haemodialysis, suggesting that no dose adjustment is necessary in this population.
Pubmed Id: 23018529
17. Ivanyuk A et al. Renal Drug Transporters and Drug Interactions. Clinical pharmacokinetics. 2017
Authors: Ivanyuk A Livio F Biollaz J Buclin T
Abstract: Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Pubmed Id: 28210973
18. Asaumi R et al. Comprehensive PBPK Model of Rifampicin for Quantitative Prediction of Complex Drug-Drug Interactions: CYP3A/2C9 Induction and OATP Inhibition Effects. CPT: pharmacometrics & systems pharmacology. 2018
Authors: Asaumi R Toshimoto K Tobe Y Hashizume K Nunoya KI Imawaka H Lee W Sugiyama Y
Abstract: This study aimed to construct a physiologically based pharmacokinetic (PBPK) model of rifampicin that can accurately and quantitatively predict complex drug-drug interactions (DDIs) involving its saturable hepatic uptake and auto-induction. Using in silico and in vitro parameters, and reported clinical pharmacokinetic data, rifampicin PBPK model was built and relevant parameters for saturable hepatic uptake and UDP-glucuronosyltransferase (UGT) auto-induction were optimized by fitting. The parameters for cytochrome P450 (CYP) 3A and CYP2C9 induction by rifampicin were similarly optimized using clinical DDI data with midazolam and tolbutamide as probe substrates, respectively. For validation, our current PBPK model was applied to simulate complex DDIs with glibenclamide (a substrate of CYP3A/2C9 and hepatic organic anion transporting polypeptides (OATPs)). Simulated results were in quite good accordance with the observed data. Altogether, our constructed PBPK model of rifampicin demonstrates the robustness and utility in quantitatively predicting CYP3A/2C9 induction-mediated and/or OATP inhibition-mediated DDIs with victim drugs.
Pubmed Id: 29368402
19. Yoshida K et al. Accurate Estimation of In Vivo Inhibition Constants of Inhibitors and Fraction Metabolized of Substrates with Physiologically Based Pharmacokinetic Drug-Drug Interaction Models Incorporating Parent Drugs and Metabolites of Substrates with Cluster Newton Method. Drug metabolism and disposition: the biological fate of chemicals. 2018
Authors: Yoshida K Maeda K Konagaya A Kusuhara H
Abstract: The accurate estimation of "in vivo" inhibition constants () of inhibitors and fraction metabolized () of substrates is highly important for drug-drug interaction (DDI) prediction based on physiologically based pharmacokinetic (PBPK) models. We hypothesized that analysis of the pharmacokinetic alterations of substrate metabolites in addition to the parent drug would enable accurate estimation of in vivoandTwenty-four pharmacokinetic DDIs caused by P450 inhibition were analyzed with PBPK models using an emerging parameter estimation method, the cluster Newton method, which enables efficient estimation of a large number of parameters to describe the pharmacokinetics of parent and metabolized drugs. For each DDI, two analyses were conducted (with or without substrate metabolite data), and the parameter estimates were compared with each other. In 17 out of 24 cases, inclusion of substrate metabolite information in PBPK analysis improved the reliability of bothandImportantly, the estimatedfor the same inhibitor from different DDI studies was generally consistent, suggesting that the estimatedfrom one study can be reliably used for the prediction of untested DDI cases with different victim drugs. Furthermore, a large discrepancy was observed between the reported in vitroand the in vitro estimates for some inhibitors, and the current in vivoestimates might be used as reference values when optimizing in vitro-in vivo extrapolation strategies. These results demonstrated that better use of substrate metabolite information in PBPK analysis of clinical DDI data can improve reliability of top-down parameter estimation and prediction of untested DDIs.
Pubmed Id: 30135241
20. Abulfathi AA et al. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clinical pharmacokinetics. 2019
Authors: Abulfathi AA Decloedt EH Svensson EM Diacon AH Donald P Reuter H
Abstract: The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the treatment duration for patients with pulmonary TB to 6 months when combined with pyrazinamide in the first 2 months. Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600 mg (8-12 mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of ≥ 95% and relapse rates of < 5%. However, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when dosed at 600 mg. Rifampicin maximum (peak) concentration (C) > 8.2 μg/mL is an independent predictor of sterilizing activity and therapeutic drug monitoring at 2, 4, and 6 h post-dose may aid in optimizing dosing to achieve the recommended rifampicin concentration of ≥ 8 µg/mL. A higher rifampicin Cis required for severe forms TB such as TB meningitis, with C≥ 22 μg/mL and area under the concentration-time curve (AUC) from time zero to 6 h (AUC) ≥ 70 μg·h/mL associated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is encouraging that daily rifampicin doses up to 35 mg/kg were found to be safe and well-tolerated over a period of 12 weeks. High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The studies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such as C/MIC (minimum inhibitory concentration) and AUC/MIC.
Pubmed Id: 31049868

epha.ch AG

Stadelhoferstrasse 40 8001 Zurich Suisse
Github LinkedIn Facebook Twitter
kontakt@epha.ch

Général

Empreinte Politique de confidentialité Conditions d'utilisation À propos de nous API

Langues

Deutsch English Français Italiano Español
Copyright © 2020 epha.ch - Tous droits réservés