epha.health
Feedback
Nouveau Cas
S'inscrire
busy
3
Médicaments
|
0
Résultats
|
Procéder

Conseils pharmacologiques pour la alprazolam, millepertuis et kétoconazole

plan
Impression
Version 6.0.32 (Beta Preview)

Résumé Résumé info 68%

Pharmacocinétique -5%
Alprazolam
Millepertuis
Kétoconazole
Les scores -6%
Extension de temps QT
Effets anticholinergiques
Effets sérotoninergiques
Effets indésirables des médicaments -21%
Somnolence
Sédation
Fatigue

Variantes ✨

Pour l'évaluation intensive en calcul des variantes, veuillez choisir l'abonnement standard payant.

médicament Zone d'application

Explications pour les patients

undefined Pharmacocinétique info -5%

∑ Expositionaalpmilkét
Alprazolam 1.1 0.69 2.06
Millepertuis 1 1 1
Kétoconazole 0.57 1 0.57
Symbole (a): changement multiplié par X de l'AUC
Légende (n.a.): Information non disponible

Les changements d'exposition mentionnés sont liés aux changements de la courbe concentration plasmatique en fonction du temps [ASC]. L'exposition à la alprazolam augmente à 110%, lorsqu'il est associé à la millepertuis (69%) et à la kétoconazole (206%). Nous ne prévoyons aucun changement d'exposition à la millepertuis, lorsqu'il est associé à la alprazolam (100%) et à la kétoconazole (100%). L'exposition à la kétoconazole est réduite à 57%, lorsqu'il est associé à la alprazolam (100%) et à la millepertuis (57%). Cela peut être associé à une efficacité réduite.

Évaluation: Les paramètres pharmacocinétiques de la population moyenne sont utilisés comme point de départ pour calculer les changements individuels d'exposition dus aux interactions.
La alprazolam a une biodisponibilité orale élevée [ F ] de 88%, raison pour laquelle les concentrations plasmatiques maximales [Cmax] ont tendance à peu changer pendant une interaction. La demi-vie terminale [ t12 ] est de 11.7 heures et les taux plasmatiques constants [ Css ] sont atteints après environ 9 999 heures. La liaison aux protéines [ Pb ] est modérément forte à 70.2% et le volume de distribution [ Vd ] est de 50 litres dans la fourchette moyenne, Étant donné que la substance a un faible taux d'extraction hépatique de 0,9, le déplacement de la liaison aux protéines [Pb] dans le contexte d'une interaction peut augmenter l'exposition. Le métabolisme s'effectue principalement via le CYP3A4.
La biodisponibilité, la demi-vie et le volume de distribution de la millepertuis ne nous sont pas connus.
La kétoconazole a une biodisponibilité orale moyenne [ F ] de 67%, raison pour laquelle les concentrations plasmatiques maximales [Cmax] ont tendance à changer avec une interaction. La demi-vie terminale [ t12 ] est assez courte à 5 heures et des taux plasmatiques constants [ Css ] sont atteints rapidement. La liaison aux protéines [ Pb ] est modérément forte à 91.5% et le volume de distribution [ Vd ] est très important à 84 litres, Étant donné que la substance a un faible taux d'extraction hépatique de 0,9, le déplacement de la liaison aux protéines [Pb] dans le contexte d'une interaction peut augmenter l'exposition. Le métabolisme s'effectue principalement via le CYP3A4 et le transport actif se fait notamment via PGP.

émetteur Effets sérotoninergiques info -4%

Les scores ∑ Points alpmilkét
Effets sérotoninergiques a 1 Ø + Ø
Symbole (a): Augmentation du risque de 5 points.

Recommandation: Par mesure de précaution, les symptômes de surstimulation sérotoninergique doivent être pris en compte, notamment après augmentation de la dose et à des doses dans la plage thérapeutique supérieure.

Évaluation: La millepertuis a un léger effet sur le système sérotoninergique. Le risque de syndrome sérotoninergique peut être classé comme faible avec ce médicament si la posologie se situe dans la plage habituelle. Selon nos connaissances, ni la alprazolam ni la kétoconazole n'augmentent l'activité sérotoninergique.

émetteur Effets anticholinergiques info -2%

Les scores ∑ Points alpmilkét
Kiesel b 1+ØØ
Symbole (b): Risque accru de 3 points.

Recommandation: Par mesure de précaution, une attention particulière doit être portée aux symptômes anticholinergiques, en particulier après augmentation de la dose et à des doses dans l'intervalle thérapeutique supérieur.

Évaluation: La alprazolam n'a qu'un effet léger sur le système anticholinergique. Le risque de syndrome anticholinergique avec ce médicament est plutôt faible si la posologie se situe dans la plage habituelle. Selon nos résultats, ni la millepertuis ni la kétoconazole n'augmentent l'activité anticholinergique.

électrocardiogramme Extension de temps QT info -0%

Les scores ∑ Points alpmilkét
RISK-PATH c 0.25ØØ+
Symbole (c): Augmentation du risque de 10 points.

Recommandation: Veuillez vous assurer que les facteurs de risque influençables sont minimisés. Les perturbations électrolytiques telles que de faibles niveaux de calcium, de potassium et de magnésium doivent être compensées. La dose efficace la plus faible de kétoconazole doit être utilisée.

Évaluation: La kétoconazole peut potentiellement prolonger le temps QT et s'il existe des facteurs de risque, les arythmies de type torsades de pointes peuvent être favorisées. Nous ne connaissons aucun potentiel d'allongement de l'intervalle QT pour la alprazolam et la millepertuis.

Autres effets secondaires Effets secondaires généraux info -21%

Effets secondaires ∑ la fréquence alpmilkét
Somnolence49.9 %49.9n.a.n.a.
Sédation45.2 %45.2n.a.n.a.
Fatigue31.3 %31.30.1n.a.
Problème de coordination24.8 %24.8n.a.n.a.
Déficience de mémoire24.3 %24.3n.a.n.a.
Vertiges20.8 %20.8n.a.n.a.
Augmentation de l'appétit19.9 %19.9n.a.n.a.
Constipation17.1 %17.1n.a.n.a.
Dysarthrie17.1 %17.1n.a.n.a.
Gain de poids14.9 %14.9n.a.n.a.
Extrait tabulaire des effets secondaires les plus courants
Signe (+): effet secondaire décrit, mais fréquence indéterminée
Signe (↑/↓): fréquence plutôt supérieure / inférieure en raison de l'exposition

Gastro-intestinal
Xérostomie (12.4%): alprazolam
La nausée: kétoconazole
Vomissements: kétoconazole
Dyspepsie: millepertuis

Mental
La dépression (11.7%): alprazolam
Irritabilité: alprazolam
Effet de rebond: alprazolam
Agitation: millepertuis
Addiction: alprazolam

Système reproducteur
Diminution de la libido (10.2%): alprazolam

Neurologique
Confusion (6%): alprazolam

Dermatologique
Sensation de brulure: kétoconazole
Prurit: kétoconazole
Démangeaison de la peau: kétoconazole
Photosensibilité: millepertuis
Syndrome de Stevens-Johnson: alprazolam

Les électrolytes
Hyperkaliémie: kétoconazole

Endocrine
Insuffisance surrénalienne: kétoconazole

Hépatique
Insuffisance hépatique: alprazolam
Hépatotoxicité: kétoconazole

Cardiaque
Arythmie ventriculaire: kétoconazole

Immunologique
Réaction d'hypersensibilité: kétoconazole

Limites Limites

Sur la base de vos et de vos informations scientifiques, nous évaluons le risque individuel d'effets secondaires indésirables. Les barres orange indiquent le potentiel de base des médicaments à provoquer cet effet secondaire. Ces recommandations visent à conseiller les professionnels et ne se substituent pas à une consultation avec un médecin. Dans la version d'essai restreinte (alpha), le risque de toutes les substances n'a pas encore été évalué de manière concluante.

littérature Références bibliographiques

1. Fraser AD et al. Urinary screening for alprazolam and its major metabolites by the Abbott ADx and TDx analyzers with confirmation by GC/MS. Journal of analytical toxicology.
Authors: Fraser AD Bryan W Isner AF
Abstract: Alprazolam is a short-acting triazolobenzodiazepine with anxiolytic and antidepressant properties. It has a half-life of 10-15 hours after multiple oral doses. Approximately 20% of an oral dose is excreted unchanged in the urine. The major urinary metabolites are alpha-OH alprazolam glucuronide and 3-HMB benzophenone glucuronide. The objective of this study was to characterize the reactivity of alprazolam and three metabolites in the Abbott ADx and TDx urinary benzodiazepine assays compared with the EMIT d.a.u. benzodiazepine assay. Alprazolam (at 300 ng/mL) gave an equivalent response as the 300 ng/mL low control (nordiazepam). alpha-OH alprazolam gave an equivalent response to this control between 300-500 ng/mL and 4-OH alprazolam between 500-1000 ng/mL. The 3-HMB benzophenone was not positive even at 10,000 ng/mL. The ADx screening assay was positive in 26 of 31 urine specimens collected from alprazolam-treated patients. All 31 of these specimens were confirmed positive for alpha-OH alprazolam by GC/MS after enzymatic hydrolysis and formation of a TMS derivative. For the TDx, 27 of 31 specimens were positive for benzodiazepines and all 31 were confirmed by GC/MS. All 5 of the negative ADx specimens and 4 of 5 TDx specimens contained 150-400 ng/mL of alpha-OH alprazolam. In conclusion, both the ADx and TDx urine benzodiazepine assays are acceptable screening assays for alprazolam use when the alpha-OH alprazolam concentration is greater than 400 ng/mL.
Pubmed Id: 2046338
2. Fawcett JA et al. Alprazolam: pharmacokinetics, clinical efficacy, and mechanism of action. Pharmacotherapy.
Authors: Fawcett JA Kravitz HM
Abstract: Alprazolam, a triazolobenzodiazepine, is the first of this new class of benzodiazepine drugs to be marketed in the United States and Canada. It achieves peak serum levels in 0.7 to 2.1 hours and has a serum half-life of 12 to 15 hours. When given in the recommended daily dosage of 0.5 to 4.0 mg, it is as effective as diazepam and chlordiazepoxide as an anxiolytic agent. Its currently approved indication is for the treatment of anxiety disorders and symptoms of anxiety, including anxiety associated with depression. Although currently not approved for the treatment of depressive disorders, studies published to date have demonstrated that alprazolam compares favorably with standard tricyclic antidepressants. Also undergoing investigation is the potential role of alprazolam in the treatment of panic disorders. Alprazolam has been used in elderly patients with beneficial results and a low frequency of adverse reactions. Its primary side effect, drowsiness, is less than that produced by diazepam at comparable doses. Data on toxicity, tolerance, and withdrawal profile are limited, but alprazolam seems to be at least comparable to other benzodiazepines. Drug interaction data are also limited, and care should be exercised when prescribing alprazolam for patients taking other psychotropic drugs because of potential additive depressant effects.
Pubmed Id: 6133268
3. Smith RB et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology. 1984
Authors: Smith RB Kroboth PD Vanderlugt JT Phillips JP Juhl RP
Abstract: Six fasting male subjects (20-32 years of age) received an oral tablet and an IV 1.0-mg dose of alprazolam in a crossover-design study. Alprazolam plasma concentration in multiple samples during 36 h after dosing was determined by electron-capture gas-liquid chromatography. Psychomotor performance tests, digit-symbol substitution (DSS), and perceptual speed (PS) were administered at 0, 1.25, 2.25, 5.0, and 12.5 h. Sedation was assessed by the subjects and by an observer using the Stanford Sleepiness Scale and a Nurse Rating Sedation Scale (NRSS), respectively. Mean kinetic parameters after IV and oral alprazolam were as follows: volume of distribution (Vd) 0.72 and 0.84 l/kg; elimination half-life (t1/2) 11.7 and 11.8 h; clearance (Cl) 0.74 and 0.89 ml/min/kg. There were no significant differences between IV and oral alprazolam in Vd, t1/2, or area under the curve. The mean fraction absorbed after oral administration was 0.92. Performance on PS and DSS tests was impaired at 1.25 and 2.5 h, but had returned to baseline at 5.0 h for both treatments. Onset of sedation was rapid after IV administration and the average time of peak sedation was 0.48 h. Sedation scores were significantly lower during hour 1 after oral administration than after IV, but were not significantly different at later times. Alprazolam is fully available after oral administration and kinetic parameters are not affected by route of administration. With the exception of rapidity of onset, the pharmacodynamic profiles of IV and oral alprazolam are very similar after a 1.0-mg dose.
Pubmed Id: 6152055
4. Dannawi M Possible serotonin syndrome after combination of buspirone and St John's Wort. Journal of psychopharmacology (Oxford, England). 2002
Authors: Dannawi M
Abstract: No Abstract available
Pubmed Id: 12503845
5. Mok NS et al. Ketoconazole induced torsades de pointes without concomitant use of QT interval-prolonging drug. Journal of cardiovascular electrophysiology. 2005
Authors: Mok NS Lo YK Tsui PT Lam CW
Abstract: Ketoconazole is not known to be proarrhythmic without concomitant use of QT interval-prolonging drugs. We report a woman with coronary artery disease who developed a markedly prolonged QT interval and torsades de pointes (TdP) after taking ketoconazole for treatment of fungal infection. Her QT interval returned to normal upon withdrawal of ketoconazole. Genetic study did not find any mutation in her genes that encode cardiac IKr channel proteins. We postulate that by virtue of its direct blocking action on IKr, ketoconazole alone may prolong QT interval and induce TdP. This calls for attention when ketoconazole is administered to patients with risk factors for acquired long QT syndrome.
Pubmed Id: 16403073
6. Park JY et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clinical pharmacology and therapeutics. 2006
Authors: Park JY Kim KA Park PW Lee OJ Kang DK Shon JH Liu KH Shin JG
Abstract: OBJECTIVE: Our objective was to evaluate the effect of the CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy volunteers. METHODS: Nineteen healthy male volunteers were divided into 3 groups on the basis of the genetic polymorphism of CYP3A5. The groups comprised subjects with CYP3A5*1/*1 (n=5), CYP3A5*1/*3 (n=7), or CYP3A5*3/*3 (n=7). After a single oral 1-mg dose of alprazolam, plasma concentrations of alprazolam were measured up to 72 hours, together with assessment of psychomotor function by use of the Digit Symbol Substitution Test, according to CYP3A5 genotype. RESULTS: The area under the plasma concentration-time curve for alprazolam was significantly greater in subjects with CYP3A5*3/*3 (830.5+/-160.4 ng . h/mL [mean+/-SD]) than in those with CYP3A5*1/*1 (599.9+/-141.0 ng . h/mL) (P=.030). The oral clearance of alprazolam was also significantly different between the CYP3A5*1/*1 group (3.5+/-0.8 L/h) and CYP3A5*3/*3 group (2.5+/-0.5 L/h) (P=.036). Although a trend was noted for the area under the Digit Symbol Substitution Test score change-time curve (area under the effect curve) to be greater in subjects with CYP3A5*3/*3 (177.2+/-84.6) than in those with CYP3A5*1/*1 (107.5+/-44), the difference did not reach statistical significance (P=.148). CONCLUSIONS: The CYP3A5*3 genotype affects the disposition of alprazolam and thus influences the plasma levels of alprazolam.
Pubmed Id: 16765147
7. Sriwiriyajan S et al. Effect of efavirenz on the pharmacokinetics of ketoconazole in HIV-infected patients. European journal of clinical pharmacology. 2007
Authors: Sriwiriyajan S Mahatthanatrakul W Ridtitid W Jaruratanasirikul S
Abstract: OBJECTIVE: To investigate the effect of efavirenz on the ketoconazole pharmacokinetics in HIV-infected patients. METHODS: Twelve HIV-infected patients were assigned into a one-sequence, two-period pharmacokinetic interaction study. In phase one, the patients received 400 mg of ketoconazole as a single oral dose on day 1; in phase two, they received 600 mg of efavirenz once daily in combination with 150 mg of lamivudine and 30 or 40 mg of stavudine twice daily on days 2 to 16. On day 16, 400 mg of ketoconazole was added to the regimen as a single oral dose. Ketoconazole pharmacokinetics were studied on days 1 and 16. RESULTS: Pretreatment with efavirenz significantly increased the clearance of ketoconazole by 201%. C(max) and AUC(0-24) were significantly decreased by 44 and 72%, respectively. The T ((1/2)) was significantly shorter by 58%. CONCLUSION: Efavirenz has a strong inducing effect on the metabolism of ketoconazole.
Pubmed Id: 17345073
8. Sekar VJ et al. Pharmacokinetics of darunavir/ritonavir and ketoconazole following co-administration in HIV-healthy volunteers. British journal of clinical pharmacology. 2008
Authors: Sekar VJ Lefebvre E De Pauw M Vangeneugden T Hoetelmans RM
Abstract: AIMS: To investigate the interaction between ketoconazole and darunavir (alone and in combination with low-dose ritonavir), in HIV-healthy volunteers. METHODS: Volunteers received darunavir 400 mg bid and darunavir 400 mg bid plus ketoconazole 200 mg bid, in two sessions (Panel 1), or darunavir/ritonavir 400/100 mg bid, ketoconazole 200 mg bid and darunavir/ritonavir 400/100 mg bid plus ketoconazole 200 mg bid, over three sessions (Panel 2). Treatments were administered with food for 6 days. Steady-state pharmacokinetics following the morning dose on day 7 were compared between treatments. Short-term safety and tolerability were assessed. RESULTS: Based on least square means ratios (90% confidence intervals), during darunavir and ketoconazole co-administration, darunavir area under the curve (AUC(12h)), maximum plasma concentration (C(max)) and minimum plasma concentration (C(min)) increased by 155% (80, 261), 78% (28, 147) and 179% (58, 393), respectively, compared with treatment with darunavir alone. Darunavir AUC(12h), C(max) and C(min) increased by 42% (23, 65), 21% (4, 40) and 73% (39, 114), respectively, during darunavir/ritonavir and ketoconazole co-administration, relative to darunavir/ritonavir treatment. Ketoconazole pharmacokinetics was unchanged by co-administration with darunavir alone. Ketoconazole AUC(12h), C(max) and C(min) increased by 212% (165, 268), 111% (81, 144) and 868% (544, 1355), respectively, during co-administration with darunavir/ritonavir compared with ketoconazole alone. CONCLUSIONS: The increase in darunavir exposure by ketoconazole was lower than that observed previously with ritonavir. A maximum ketoconazole dose of 200 mg day(-1) is recommended if used concomitantly with darunavir/ritonavir, with no dose adjustments for darunavir/ritonavir.
Pubmed Id: 18460033
9. Ivanyuk A et al. Renal Drug Transporters and Drug Interactions. Clinical pharmacokinetics. 2017
Authors: Ivanyuk A Livio F Biollaz J Buclin T
Abstract: Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Pubmed Id: 28210973
10. Cherkaoui-Rbati MH et al. A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions. PloS one. 2017
Authors: Cherkaoui-Rbati MH Paine SW Littlewood P Rauch C
Abstract: All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies.
Pubmed Id: 28910306
11. Kiesel EK et al. An anticholinergic burden score for German prescribers: score development. BMC geriatrics. 2018
Authors: Kiesel EK Hopf YM Drey M
Abstract: BACKGROUND: Anticholinergic drugs put elderly patients at a higher risk for falls, cognitive decline, and delirium as well as peripheral adverse reactions like dry mouth or constipation. Prescribers are often unaware of the drug-based anticholinergic burden (ACB) of their patients. This study aimed to develop an anticholinergic burden score for drugs licensed in Germany to be used by clinicians at prescribing level. METHODS: A systematic literature search in pubmed assessed previously published ACB tools. Quantitative grading scores were extracted, reduced to drugs available in Germany, and reevaluated by expert discussion. Drugs were scored as having no, weak, moderate, or strong anticholinergic effects. Further drugs were identified in clinical routine and included as well. RESULTS: The literature search identified 692 different drugs, with 548 drugs available in Germany. After exclusion of drugs due to no systemic effect or scoring of drug combinations (n = 67) and evaluation of 26 additional identified drugs in clinical routine, 504 drugs were scored. Of those, 356 drugs were categorised as having no, 104 drugs were scored as weak, 18 as moderate and 29 as having strong anticholinergic effects. CONCLUSIONS: The newly created ACB score for drugs authorized in Germany can be used in daily clinical practice to reduce potentially inappropriate medications for elderly patients. Further clinical studies investigating its effect on reducing anticholinergic side effects are necessary for validation.
Pubmed Id: 30305048

epha.ch AG

Stadelhoferstrasse 40 8001 Zurich Suisse
Github LinkedIn Facebook Twitter
kontakt@epha.ch

Général

Empreinte Politique de confidentialité Conditions d'utilisation À propos de nous API

Langues

Deutsch English Français Italiano Español
Copyright © 2020 epha.ch - Tous droits réservés